
Anthony J. Leggett
Department of Physics

University of Illinois at Urbana-Champaign, USA

and

Director, Center for Complex Physics  

Shanghai Jiao Tong University

SHANGHAI JIAO TONG UNIVERSITY

LECTURE 9
2017



SJTU 9.1

Lecture 9 – Dirty Superconductors

Experimental fact: 

Quite strong nonmagnetic disorder (e.g. alloying) 
does little harm to superconductivity, while even 
tiny amounts (~ a few ppm) of magnetic impurities 
suppress it completely. 

Why?



SJTU 9.2A. Nonmagnetic Disorder
෡𝐻 = ෡𝐻0 + ෠𝑉

෡𝐻0 = ෍

𝑖

Ƹ𝑝𝑖
2

2𝑚
+ ෡𝑈 𝒓𝑖

Assume: 𝑘𝑓𝑙 ≫ 1 (but possibly 𝑙 ≲ 𝜉0)

Eigenstates of ෡𝐻0 are of form

𝜓𝑛 𝒓, 𝜎 = 𝜙𝑛 𝒓 | ۧ𝜎 ≡ | ۧ𝑛, 𝜎 , | ۧ𝜎 ≡ (| ۧ↑ , | ۧ↓ ) with energy 𝜖𝑛

where 𝜙𝑛 𝑟 is very complicated.

However, note that average density of states
𝑑𝑛

𝑑𝜖
≡ 2σ𝑛 𝛿 𝜖 − 𝜖𝑛

is much the same (for 𝑘𝑓𝑙 ≫ 1) as in original (crystalline) case.

Crucial point: since ෡𝐻0 is invariant under time-reversal

(| ۧ↑ ⇄ | ۧ↓ , 𝜙𝑛 𝒓 ⇄ 𝜙𝑛
∗ 𝒓 ≡ | ۧത𝑛 ), 

then if state | ۧ𝑛, ↑ is an eigenstate of ෡𝐻0 with energy 𝜖𝑛,  

then | ۧത𝑛, ↓ is also eigenstate of ෡𝐻0 with energy 𝜖𝑛 .

Note: 𝜙 ത𝑛 𝒓 may or may not be identical to 𝜙𝑛 𝒓 , i.e. 𝜑𝑛 𝒓 may
or may not be real, (doesn’t matter!)

single-
electron

inter-electron
interaction

potential due to
atomic cores

spin-independent
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Recall that in free space, BCS ground state was

Ψ = ෑ

𝑘

Φ𝑘

So, replace ۧ|𝑘 ↑ , ۧ|−𝑘 ↓ by ۧ|𝑛 ↑ , ۧ| ത𝑛 ↓ and generalize BCS ansatz:

Ψ = ෑ

𝑛

Φ𝑛

Assume as in free-space case that at T=0 ۧ|0,1 , ۧ|1,0 are irrelevant, then
Φ𝑛 = 𝑢𝑛 ۧ|0,0 + 𝑣𝑛 ۧ|1,1 𝑢𝑛

2 + 𝑣𝑛
2 = 1

i.e. pair in time-reversed states

KE is identical to free-space case with 𝒌 → 𝑛:

𝑇 = 2෍

𝑛

𝜖𝑛 𝑣𝑛
2

For the PE, as in the free-space case, we need to calculate the matrix 
element

𝜓𝑓
෠𝑉 𝜓𝑖𝑛

For a δ-function interaction 𝑉 𝑟𝑖 − 𝑟𝑗 = 𝑉0𝛿 𝑟𝑖 − 𝑟𝑗 , this is equal to 

𝑉0𝑢𝑛𝑣𝑛′
∗ 𝑢𝑛′𝑣𝑛න𝜙𝑛′

∗ 𝑟 𝜙 ത𝑛′
∗ 𝑟 𝜙𝑛 𝑟 𝜙 ത𝑛 𝑟 d𝑟

But since 𝜙 ത𝑛
∗ 𝑟 = 𝜙𝑛 𝑟 (etc.), this can be rewritten (regrouping the u’s 

and v’s)

𝑉0𝑢𝑛𝑣𝑛𝑢𝑛′𝑣𝑛′
∗ න 𝜙𝑛′ 𝑟

2 ⋅ 𝜙𝑛 𝑟 2d𝑟

For normalization in unit volume the integral, thought not exactly equal 
to 1, is very close to it, so 

𝑉 ≅ 𝑉0 ෍

𝑛,𝑛′

𝑢𝑛𝑣𝑛 𝑢𝑛′𝑣𝑛′
∗ ≡ 𝑉0෍

𝑛

𝐹𝑛𝐹𝑛′
∗

Φ𝑘 ≡ state vector in “occupation 
space” of ۧ|𝑘, ↑ , ۧ|−𝑘, ↓

Φ𝑘 ≡ state vector in “occupation 
space” of ۧ|𝑛, ↑ , ۧ| ത𝑛, ↓

with   𝜓𝑖𝑛 ≡ 𝑛 ↑, ത𝑛 ↓ occupied; 𝑛′ ↑, ത𝑛′ ↓ empty
𝜓𝑓 ≡ 𝑛 ↑, ത𝑛 ↓ empty; 𝑛′ ↑, ത𝑛′ ↓ occupied

≡ 𝑢𝑛𝑣𝑛
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The subsequent algebra goes through exactly as in the free-
space case, and we end up with the gap equation

Δ𝑛 = −𝑉0෍

𝑛′

Δ𝑛′

2𝐸𝑛′
𝐸𝑛 ≡ 𝜖𝑛

2 + Δ𝑛
2

1
2

Assuming Δ𝑛 = Δ = const and turning the Σ𝑛 into ׬ d𝜖:

1 = −𝑉0න
−𝜖𝑐

𝜖𝑐 𝜌 𝜖 d𝜖

2 𝜖2 + Δ 2 ൗ1 2

Since 𝜌 𝜖 is (almost) the same as for the original free-space 
case, this is (almost) the original BCS gap equation and has the 
same solution

Δ = 2𝜖𝑐𝑒
Τ−1 𝑁 0 𝑉 𝑁 0 ≡

1

2

d𝑛

d𝜖 𝜖=𝜖𝑓

Thus,

thermodynamics almost unaffected by alloying

(in zero magnetic field, for 𝑘𝐹𝑙 ≫ 1)

(we have simply “shuffled the original plane-wave states 
around”)

Similar results at non-zero T, e.g. 
𝜒 𝑇

𝜒𝑛
= 𝑌(𝑇) (Yoshida function) 

(since 𝑛 ↑, ത𝑛 ↓ still eigenstates of spin)

However, calculation of normal density does not go through

(∵single-particle energy eigenstates 𝑛, 𝜎 are not eigenstates of 
momentum) 
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OK, so which properties are affected by alloying?

(a) Pair radius

Recall: in pure metal, with pairs at rest, “pair wave function”
𝐹 is independent of COM variable 𝑅, and as function of 
relative coordinates 𝑟 is given (at 𝑇 = 0) by

𝐹 𝑟 =෍

𝑘

𝐹𝑘exp(𝑖𝑘 ∙ 𝑟) 𝐹𝑘 ≡ ∆/2𝐸𝑘 𝐸𝑘 ≡ (𝜖𝑘
2 + ∆ 2)1/2

The “range” of 𝐹 in 𝜖 is ~∆, hence in 𝑘 it is ∆/ℏ𝑣𝐹, so by 
indeterminancy principle ∆k ∙ ∆𝑟 ~1 we have,

∆𝑟~ℏ𝑣𝐹/𝜋∆≡ 𝜉0(≡ “pair radius”)

(Technically, 𝐹 𝑟 ~exp−𝑟 /𝜉′, 𝜉′ ~𝜉0)

In the dirty system, pair wave function 𝐹 is given by

𝐹 𝒓, 𝒓′ =෍

𝑛

𝑢𝑛𝑣𝑛𝜑𝑛 𝒓 𝜑 ത𝑛 𝒓′

≡෍

𝑛

𝑢𝑛𝑣𝑛𝜑𝑛 𝑹+ 𝒓/2 𝜑 ത𝑛(𝑹 − 𝒓 ′/2)

so is technically a function also of COM variable 𝑅. So let's 
define

𝐹 𝑟 ≡ 𝐹 𝑅 + 𝑟/2, 𝑅 − 𝑟′/2 where average is over 𝑅

What is dependence of 𝐹 𝑟 on relative coordinate 𝑟? Rewrite



SJTU 9.6

𝐹 𝑟 =෍

𝑛

(∆/2𝐸𝑛)𝜑𝑛 𝑹 + 𝒓/2 𝜑𝑛
∗(𝑹 − 𝒓′/2)

since 𝜑 ത𝑛 ≡ 𝜑𝑛
∗

Intuitive (semiclassical) argument:

𝐹 𝒓 will drop below its 𝒓 = 0 value as 
soon as difference in phase of the 
product 𝜑𝑛 𝑹 + 𝒓/2 𝜑𝑛

∗(𝑹 − 𝐫′/2) for 
different 𝑛 becomes ~2𝜋. Semiclassically, 
a wave packet with spread in energy ∆𝜖
will be dephased (indeterminacy!) in a 
time ∆𝑡~ℏ/∆𝜖. In our case ∆𝜖~∆, so 
dephasing time is 

∆t~ℏ/∆

How far does the packet travel in ∆t? In pure metal, 𝑟~𝑣𝐹𝑡
so ∆𝑟~ℏ𝑣𝐹/∆

leading to 𝑟𝑝~ℏ𝑣𝐹/∆ as above. But in a dirty metal (𝑙 ≪ 𝜉0) 

motion is diffusive, and we have

𝑟2~𝐷∆𝑡 𝐷~
1

3
𝑣𝐹𝑙

so putting ∆t~ℏ/∆

𝑟𝑝~(ℏ𝑣𝐹𝑙/∆)
1/2 or since 𝜉0~ℏ𝑣𝐹/∆

𝑟𝑝~(𝜉0𝑙)
1/2 (dirty limit)

i.e. pair radius decreases by factor (𝑙/𝜉0)
1/2 (which can be ≪ 1). 

(Also  in limit 𝑇 → 𝑇𝑐, i.e. 𝜌𝑠
𝑑𝑖𝑟𝑡𝑦

(𝑇)~(𝑙/𝜉0)
1/2𝜌𝑠

𝑐𝑙𝑒𝑎𝑛
(𝑇)).
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(b) Superfluid density 

The superfluid density 𝜌𝑠 can be defined in two 
apparently different ways:

(1) as the coefficient of the dependence of the GL free 
energy on “bending” of the GL order parameter, for 𝐴 = 0,

∆𝐹 =
1

2
𝜌𝑠𝑣𝑠

2 with 𝑣𝑠 ≡
ℏ

2𝑚
(𝛻𝜑) Ψ~ Ψ 𝑒𝑥𝑝𝑖𝜑

(2) as the (diamagnetic) response of the current to a weak 
transverse EM vector potential, 

𝐽 = −𝜌𝑠(
𝑒

𝑚
)2𝐴

(In pure case at 𝑇 = 0, 𝜌𝑠 = nm so recover London equation)

To see that the two definitions are equivalent, consider a thin 
superconducting ring in a weak circumferential (i.e. transverse) 
vector potential 𝐴: then must generalize definition of 𝑣𝑠 to

𝑣𝑠 =
ℏ

2𝑚
(𝛻𝜑 −

2𝑒𝐴

ℏ
)

If 𝐴 is weak, SVBC enforces 𝜑 = 𝑐𝑜𝑛𝑠𝑡. so 

𝑣𝑠 = −
𝑒

𝑚
𝐴

∆𝐹 =
1

2
𝜌𝑠(

𝑒

𝑚
)2𝐴2

but quite generally, 𝐽 = −𝜕(∆𝐹)/𝜕𝐴

J = −𝜌𝑠(
𝑒

𝑚
)2𝐴

in accordance with second definition.

𝐴𝐽

for A = 0
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To estimate effects of disorder on 𝜌𝑠 (at 𝑇 = 0), proceed as 
follows: Although we have up to now assumed that when 𝐴
is a function of 𝑟 the current 𝐽 𝑟 is related to 𝐴 𝑟 by the 
London relation

𝐽 𝑟 = −𝜌𝑠
𝑒

𝑚

2

𝐴(𝑟)

this is actually not quite right. In fact, the more correct formula 
is

𝐽 𝑟 = නΚ 𝑟, 𝑟′ 𝐴 𝑟′ d𝑟′

For the pure case the “range” of Κ 𝑟, 𝑟 ′ = Κ 𝑟 − 𝑟 ′ is ~ the 
pair radius 𝜉0. In fact the exact formula in BCS theory is close 
to Pippard's original guess,

Κ 𝑟 − 𝑟′ ~ −
3𝑛𝑒2

4𝜋𝑚𝜉0

1

𝑟 − 𝑟′ 2
𝑒𝑥𝑝 − 𝑟 − 𝑟′ /𝜉0

If 𝐴(𝑟) is slowly varying over distances ~𝜉0, this gives back the 
London relation

𝐽 𝑟 ≅ 𝐴(𝑟)නΚ 𝑟 − 𝑟′ d𝑟′ = −
𝑛𝑒2

𝑚
𝐴(𝑟)

Now, if 𝑙 ≲ 𝜉0, expect intuitively that induced current falls off 

as 𝑒− 𝑟−𝑟′ /𝑙, i.e.

Κ 𝑟 − 𝑟′ ~ (𝑝𝑟𝑒𝑓𝑎𝑐𝑡𝑜𝑟 𝑥)𝑒𝑥𝑝 − 𝑟 − 𝑟′ (
1

𝜉0
+
1

𝑙
)

(Pippard)
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Hence, integral is reduced by factor 

Hence in dirty limit,

𝜌𝑠
𝑑𝑖𝑟𝑡𝑦

~(𝑙/𝜉0)𝜌𝑠
𝑐𝑙𝑒𝑎𝑛 ≪ 𝜌𝑠

𝑐𝑙𝑒𝑎𝑛

(also in limit 𝑇 → 𝑇𝑐).

1/𝜉0
1/𝜉0 + 1/𝑙

≡
1

1 + 𝜉0/𝑙
~𝑙/𝜉0,   for   𝑙 ≪ 𝜉0. 
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Effects of disorder in language of GL theory (T→Tc):

ℱ{Ψ(𝑟): 𝑇} = (𝛼0(𝑇 − 𝑇𝑐)|Ψ|
2 +

1

2
𝛽0|Ψ|

4 + 𝛾0|𝛻Ψ|
2)

In dirty limit (𝑙 ≪ 𝜉0 but still 𝑘𝐹𝑙 ≫ 1)

but,

𝛾0
dirty

∼
𝜆

𝜉0
𝛾0
clean ≪ 𝛾0

clean

Recall:

𝜉(𝑇) ∼ (𝛾0/𝛼0(𝑇 − 𝑇𝑐))
1/2

𝜆(𝑇) ∼ (𝛾0|Ψ(𝑇)|
2)−1/2

Thus, 

𝜉dirty(𝑇) ∼ (𝑙/𝜉0)
1/2𝜉clean(𝑇)

𝜆dirty(𝑇) ∼ (𝜉0/𝑙)
1/2𝜆clean(𝑇)

⇒ 𝜅dirty ≡ (𝜆/𝜉)dirty ∼ (𝜉0/𝑙)𝜅clean ≫ 𝜅clean
⇒ alloying makes system much more type-II.

in particular, 

𝐻𝑐1

dirty
∼ 𝜆dirty

−2 ≪ 𝐻𝑐1
clean

𝐻𝑐2

dirty
∼ 𝜉dirty

−2 ≫ 𝐻𝑐2
clean

𝛼0
dirty

≅ 𝛼0
clean

𝛽0
dirty

≅ 𝛽0
clean

so,Ψdirty 𝑇 ≅ Ψclean(𝑇)
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B. Magnetic disorder

Now we have

𝐻
^

= 𝐻0

^

+ 𝑉
^

but now

𝐻0

^

=෍

𝑖

(𝑝
^

𝑖/2𝑚) + 𝑈(𝑟𝑖: 𝜎𝑖)

so now TRI (Time Reversal Invariance) is broken, and state |𝑛, −𝜎ۧ
(when 𝜑 ത𝑛(𝒓) ≡ 𝜑𝑛

∗(𝒓)) is no longer degenerate with |𝑛, 𝜎ۧ, indeed is 
in general not even an energy eigenstate.

Two obvious proposals for GS:

(a) Pair in exact eigenfunctions of single-particle Hamiltonian, i.e. if 

exact eigenstates of 𝐻
^

0 for 𝜎 =↓ are denoted 𝜑𝑚, pair off 𝑛 with 
some 𝑚 (≠ 𝑛).

Then KE is much the same as in pure (BCS) case. However,

⟨𝑉ۧ ∼ 𝑉0 ෍

𝑚𝑚′

׬ 𝑑𝑟𝜑𝑛
∗(𝑟)𝜑𝑚

∗ (𝑟)𝜑𝑚′(𝑟)𝜑𝑛′(𝑟)

and since we no longer have 𝜑 ത𝑛(𝑟) = 𝜑𝑛
∗(𝑟), (etc.) the integral is 

oscillating and hence very small. This scheme is usually very 
energetically disadvantageous.

single-electron Inter-electron 
interaction
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∼ Γ𝑠 ⇒ extra energy required ∼ Γ𝑠 × no. of 
perturbed states ∼ Γ𝑠(Γ𝑠𝑑𝑛/𝑑𝜀) ≡
Γ𝑠
2𝑑𝑛/𝑑𝜀.

On the other hand, this scheme keeps the 
whole of the pure-state condensation 
energy, which is

𝐸
cond
(pure)

∼ −Δ0
2(

𝑑𝑛

𝑑𝜀
) (Δ0 ≡ gap of pure system)

Hence we expect that this scheme will give an energy lower than 

the 𝑁−state provided |𝐸
cond
(pure)

| > Γ2
𝑠
𝑑𝑛/𝑑𝜀, i.e. condition for 

magnetic impurities to suppress superconductivity completely is

Γ𝑠≳Δ0

which is equivalent to 𝑙𝑠 ≲ 𝜉0. (i.e. mean free path against spin-
dependent scattering ≲ (pure metal) pair radius). Actually, exact 
calculation (Abrikosov-Gor'kov) shows that at 𝑇 = 0 condition is 
in fact simply Γ𝑠 > Δ0) . 

(b) Continue to pair in time-reversed states, even though these 
are no longer eigenstates of ෡𝐻0. How much extra energy does 
this cost? Suppose “lifetime for different scattering of ↑ and ↓” is 
𝜏𝑠 ≡ ℏΓ𝑠

−1 then by indeterminacy principle extra energy 
necessary to keep state of ↓ the time-reverse of that of ↑ is

𝜀 →

𝜀𝐹

Γ𝑠


