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Lecture 9 — Dirty Superconductors

Experimental fact:

Quite strong nonmagnetic disorder (e.g. alloying)
does little harm to superconductivity, while even
tiny amounts (~ a few ppm) of magnetic impurities
suppress it completely.

Why?
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A. Nonmagnetic Disorder

H = HO + 17
) “ inter-electron
single- . .
interaction
electron

potential due to
atomic cores

spin-independent

Assume: k¢l > 1 (but possibly [ < &)

Eigenstates of H, are of form
Y, (r,0) = ¢p,(1)|o) =|n,0),|o) = (|T),|{)) with energy €,

where ¢, () is very complicated.

However, note that average density of states

d
d—:E 2),6(e —€,)

is much the same (for k¢l >> 1) as in original (crystalline) case.

Crucial point: since H; is invariant under time-reversal

(1M 2 1), dn(r) 2 ¢p(r) = |1)),
then if state |n, T) is an eigenstate of H, with energy €,
then |7, 1) is also eigenstate of H, with energy €,, .

Note: ¢ (r) may or may not be identical to ¢,,(r), i.e. ¢,,(r) may
. or may not be real, (doesn’t matter!)
I



Recall that in free space, BCS ground state was
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Y = ‘ ‘ D, @, = state vector in “occupation
space” of |k, T), |-k, )

So, replace |k T),|—k 1) by |In T),|n l) and generalize BCS ansatz:

Y= ‘ ‘ Dy @, = state vector in “occupation
space” of |n, T), |1, 1)

Assume as in free-space case that at T=0 |0,1), |1,0) are irrelevant, then
cbn =un|0:0)+vn|1:1> |un|2+|vn|2 - 1

i.e. pair in time-reversed states

KE is identical to free-space case with k — n:

(T) = Zzenh]n'Z

For the PE, as in the free-space case, we need to calculate the matrix
element

<¢f|V|¢in) with ¢¥;, = (n T,n | occupied; n' T,7" | empty)

Yr=mhnl empty; n' T,n" | occupied)
For a 6-function interaction V(r = VO(S(ri — r-), this is equal to

Vottn ¥ty U j ~ (r>¢ () ()b (F)dr

Buésm;:e ¢ () = ¢, (r) (etc.), this can be rewritten (regrouping the u’s
and v’s

Vol Uty V. f 1y ()12 - | () [2dlr

For normalization in unit volume the integral, thought not exactly equal
to 1, is very close to it, so

(V) =V, Z(unvn)(un,v;,) =V, z F.F
nn' n \

= U, v,
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The subsequent algebra goes through exactly as in the free-
space case, and we end up with the gap equation

A 1
My==Vo ) o By = (18,002
n’ "

Assuming A, = A = const and turning the Z,, into [ de:

€c €)de
- —Voj p(€) 1
—ec 2(€2 + |A]12) /2

Since p(€) is (almost) the same as for the original free-space
case, this is (almost) the original BCS gap equation and has the
same solution

A = ZECe—l/N(O)V (N(O) — %(@)ezef)

de
Thus,
thermodynamics almost unaffected by alloying
(in zero magnetic field, for kgl > 1)

(we have simply “shuffled the original plane-wave states
around”)

. T
Similar results at non-zero T, e.g. X; )

n

= Y (T) (Yoshida function)

(sincen T,7 | still eigenstates of spin)

However, calculation of normal density does not go through

(~-single-particle energy eigenstates n, o are not eigenstates of
momentum)
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OK, so which properties are affected by alloying?

(a) Pair radius

Recall: in pure metal, with pairs at rest, “pair wave function”
F is independent of COM variable R, and as function of
relative coordinates r is given (at T = 0) by

F(r) = ZFREXp(ik -r) F,=A/2E, E;= (EI% + |A|2)1/2
k

The “range” of F in € is ~A, hence in k it is A/hv, so by
indeterminancy principle Ak - Ar ~1 we have,

Ar~hvg /TA= &4(= “pair radius”)
(Technically, F(r)~exp—r /&', &' ~&p)

In the dirty system, pair wave function F is given by

FO,1") = ) tntnn() 0n(r)

n

= 2 unvn(pn(R + T/Z) (pﬁ(R —-r ’/2)

so is technically a function also of COM variable R. So let's
define

F(ry=F(R+1r/2,R —r'/2) where average is over R

What is dependence of F(r) on relative coordinate r? Rewrite
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FG) = ) (8/2E)9n(R + 1/ D (R—1/2)

T

since @7 = @,

Intuitive (semiclassical) argument:

F (r) will drop below its = 0 value as ®
soon as difference in phase of the

product @,(R +1/2) @, (R —1'/2) for
different n becomes ~2m. Semiclassically,

a wave packet with spread in energy Ae

will be dephased (indeterminacy!) in a ®
time At~h/Ae€. In our case Ae~A, so

dephasing time is

At~h/A
How far does the packet travel in At? In pure metal, r~vgt
o) Ar~hvp /A

leading to 1,~hAv /A as above. But in a dirty metal (I < )
motion is diffusive, and we have

r’~DAt D"'%UFI
so putting At~h /A
1y~ (hvgl/A)Y/? or since Eg~hvg /A
1y~ (&2 (dirty limit)

i.e. pair radius decreases by factor (I/&,)'/? (which can be « 1).
(Also inlimitT - T, i.e. ps(dlrty) (T)~(1/&) /2 ple™™ (T)),
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(b) Superfluid density

The superfluid density ps can be defined in two
apparently different ways:

(1) as the coefficient of the dependence of the GL free
energy on “bending” of the GL order parameter, for A = 0,

1
AF = = p,v2 with v, = o (V) Y~|W|expip
2 2m
forA=0

(2) as the (diamagnetic) response of the current to a weak
transverse EM vector potential,

] = _ps(i)zA
m
(In pure case at T = 0, p; = nm so recover London equation)
To see that the two definitions are equivalent, consider a thin
superconducting ring in a weak circumferential (i.e. transverse)
vector potential A: then must generalize definition of v to

h 2eA
= am e

If A is weak, SVBC enforces ¢ = const. so

e A
vg=——A A]/ \
m
—_— AF == (a2

but quite generally, ] = —d(AF)/0A
e
] = _ps(a)zA

in accordance with second definition.
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To estimate effects of disorder on pg (at T = 0), proceed as

follows: Although we have up to now assumed that when A
is a function of r the current J(r) is related to A(r) by the
London relation

1) = —ps (2) 4@

this is actually not quite right. In fact, the more correct formula
is

J(r) = jK(r,r’)A(r’)dr’

For the pure case the “range” of K(r,r") = K(r — r')is ~ the
pair radius &,. In fact the exact formula in BCS theory is close
to Pippard's original guess,

3ne? 1

K(r =)~ = et e = Ir = |/

If A(r) is slowly varying over distances ~¢, this gives back the
London relation

2
J(r) = A(r) f K(r —r")dr' = —%A(r}

Now, if [ S &, expect intuitively that induced current falls off
as e‘|r—r’|/l, i.e.

1 1
K(r —r") ~ (prefactor x)exp — |r —r'|(— + 7)
0

(Pippard)



Hence, integral is reduced by factor

1/$o _ 1
1/&0+1/1 7 1+ &,/1 ~l/&y, for | K &.

Hence in dirty limit,

ps T ~(U/&)psterm << pgteam

(alsoinlimit T — T,).
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Effects of disorder in language of GL theory (T—T¢):
1
FMP@):T} = (ao(T — T)|P]* + Eﬁol‘l’l4 +¥o|V¥]?)

In dirty limit ([ < &, but still kgl > 1)

dirt
o y ~ aclean

0 0 . ~
dirty ~ pclean } 30, Lpdlrt}’(T) = Weean(T)
By~ =Bo

but,
dirt A
Ve y _ <§_> yglean & yglean
0
Recall:
$(T) ~ (Yo/ao(T — Tc))l/z
AT) ~ (yo|W(T)|>) ™12
Thus,

fdirty(T) ~ (1/50)1/zgclean(’r)
Adirty(T) ~ (fo/l)l/z/lc]ean(’r)

= Kdirty = (/S dirty ~ o/DKclean > ¥clean
= alloying makes system much more type-II.

in particular,

dirty -2 clean
dirty .- clean
H, = ~ Scdirty »> Hey

H
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B. Magnetic disorder

Now we have

H=Hy,+V
Vs AN

single-electron Inter-electron

but now interaction

Hy = ) (pi/2m) + UGri: )

so now TRI (Time Reversal Invariance) is broken, and state |n, —ao)
(when @5(1) = @, (1)) is no longer degenerate with |n, o), indeed is
in general not even an energy eigenstate.

Two obvious proposals for GS:

(a) Pair in exact eigenfunctions of single-particle Hamiltonian, i.e. if

exact eigenstates of H, for ¢ =! are denoted ¢,,,, pair off n with
some m (# n).

Then KE is much the same as in pure (BCS) case. However,
V) ~Vo ) [ drgi)on ) om ) ()
mm

and since we no longer have @7 (1) = @, (1), (etc.) the integral is
oscillating and hence very small. This scheme is usually very
energetically disadvantageous.
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(b) Continue to pair in time-reversed states, even though these
are no longer eigenstates of ﬁo. How much extra energy does
this cost? Suppose “lifetime for different scattering of T and l” is
7, = hly ! then by indeterminacy principle extra energy
necessary to keep state of | the time-reverse of that of T is

I
~ I’y = extra energy required ~ I’ X no. of DI

perturbed states ~ I';(I'xydn/de) =
I2dn/de. //_\

On the other hand, this scheme keeps the
whole of the pure-state condensation
energy, which is

E —

€F
EPUTE) - 3

cond (A, = gap of pure system)

Hence we expect that this scheme will give an energy lower than

the N—state provided |E£g§£e)| > FZS dn/de, i.e. condition for
magnetic impurities to suppress superconductivity completely is

I,=A,

which is equivalent to [ < &,. (i.e. mean free path against spin-
dependent scattering < (pure metal) pair radius). Actually, exact
calculation (Abrikosov-Gor'kov) shows that at T = 0 condition is
in fact simply I, > 4,) .



