SHANGHAI JIAO TONG UNIVERSITY LECTURE 9 2017

Anthony J. Leggett

Department of Physics University of Illinois at Urbana-Champaign, USA and Director, Center for Complex Physics Shanghai Jiao Tong University

Lecture 9 – Dirty Superconductors

Experimental fact:

Quite strong nonmagnetic disorder (e.g. alloying) does little harm to superconductivity, while even tiny amounts (~ a few ppm) of magnetic impurities suppress it completely.

Why?

A. Nonmagnetic Disorder

potential due to omic cores $\widehat{H}_0 = \sum_i \left(\frac{\widehat{p}_i^2}{2m} + \widehat{U}(\mathbf{r}_i) \right)$ spin-independent

Assume: $k_f l \gg 1$ (but possibly $l \leq \xi_0$)

Eigenstates of \hat{H}_0 are of form

 $\psi_n(\mathbf{r},\sigma) = \phi_n(\mathbf{r}) |\sigma\rangle \equiv |n,\sigma\rangle$, $|\sigma\rangle \equiv (|\uparrow\rangle,|\downarrow\rangle)$ with energy ϵ_n where $\phi_n(r)$ is very complicated.

However, note that average density of states $\frac{dn}{d\epsilon} \equiv 2\sum_n \delta(\epsilon - \epsilon_n)$

is much the same (for $k_f l \gg 1$) as in original (crystalline) case.

Crucial point: since \widehat{H}_0 is invariant under time-reversal $(|\uparrow\rangle \rightleftharpoons |\downarrow\rangle, \phi_n(\mathbf{r}) \rightleftharpoons \phi_n^*(\mathbf{r}) \equiv |\bar{n}\rangle),$ then if state $|n, \uparrow\rangle$ is an eigenstate of \widehat{H}_0 with energy ϵ_n , then $|\bar{n},\downarrow\rangle$ is also eigenstate of \hat{H}_0 with energy ϵ_n .

Note: $\phi_{\bar{n}}(\mathbf{r})$ may or may not be identical to $\phi_n(\mathbf{r})$, *i.e.* $\varphi_n(\mathbf{r})$ may or may not be real, (doesn't matter!)

Recall that in free space, BCS ground state was

$$\Psi = \prod_{k} \Phi_{k} \qquad \qquad \Phi_{k} \equiv \text{state vector in "occupation} \\ \text{space" of } |k, \uparrow\rangle, |-k, \downarrow\rangle$$

SJTU 9.3

So, replace $|k \uparrow\rangle$, $|-k \downarrow\rangle$ by $|n \uparrow\rangle$, $|\bar{n} \downarrow\rangle$ and generalize BCS ansatz: $\Psi = \prod_{n} \Phi_{n} \qquad \Phi_{k} \equiv \text{state vector in "occupation space" of } |n, \uparrow\rangle, |\bar{n}, \downarrow\rangle$

Assume as in free-space case that at T=0 $|0,1\rangle$, $|1,0\rangle$ are irrelevant, then $\Phi_n = u_n |0,0\rangle + v_n |1,1\rangle$ $|u_n|^2 + |v_n|^2 = 1$

i.e. pair in time-reversed states

KE is identical to free-space case with $k \rightarrow n$:

$$\langle T \rangle = 2 \sum_{n} \epsilon_{n} |v_{n}|^{2}$$

For the PE, as in the free-space case, we need to calculate the matrix element

But since $\phi_{\bar{n}}^*(r) = \phi_n(r)$ (etc.), this can be rewritten (regrouping the u's and v's)

$$V_0 u_n v_n u_{n'} v_{n'}^* \int |\phi_{n'}(r)|^2 \cdot |\phi_n(r)|^2 dr$$

For normalization in unit volume the integral, thought not exactly equal to 1, is very close to it, so

$$\langle V \rangle \cong V_0 \sum_{n,n'} (u_n v_n) (u_{n'} v_{n'}^*) \equiv V_0 \sum_n F_n F_{n'}^*$$

$$\equiv u_n v_n$$

The subsequent algebra goes through exactly as in the freespace case, and we end up with the gap equation

$$\Delta_n = -V_0 \sum_{n'} \frac{\Delta_{n'}}{2E_{n'}} \qquad E_n \equiv (\epsilon_n^2 + |\Delta_n|^2)^{\frac{1}{2}}$$

Assuming $\Delta_n = \Delta = \text{const}$ and turning the Σ_n into $\int d\epsilon$: $1 = -V_0 \int_{-\epsilon_c}^{\epsilon_c} \frac{\rho(\epsilon) d\epsilon}{2(\epsilon^2 + |\Delta|^2)^{1/2}}$

Since $\rho(\epsilon)$ is (almost) the same as for the original free-space case, this is (almost) the original BCS gap equation and has the same solution

$$\Delta = 2\epsilon_c e^{-1/N(0)V} \qquad \left(N(0) \equiv \frac{1}{2} \left(\frac{\mathrm{d}n}{\mathrm{d}\epsilon}\right)_{\epsilon=\epsilon_f}\right)$$

Thus,

thermodynamics almost unaffected by alloying (in zero magnetic field, for $k_F l \gg 1$)

(we have simply "shuffled the original plane-wave states around")

Similar results at non-zero T, e.g. $\frac{\chi(T)}{\chi_n} = Y(T)$ (Yoshida function) (since $n \uparrow, \bar{n} \downarrow$ still eigenstates of spin)

However, calculation of normal density does not go through (\because single-particle energy eigenstates n, σ are not eigenstates of momentum)

OK, so which properties are affected by alloying?

(a) Pair radius

Recall: in pure metal, with pairs at rest, "pair wave function" F is independent of COM variable R, and as function of relative coordinates r is given (at T = 0) by

$$F(r) = \sum_{k} F_k \exp(ik \cdot r) \quad F_k \equiv \Delta/2E_k \quad E_k \equiv (\epsilon_k^2 + |\Delta|^2)^{1/2}$$

The "range" of F in ϵ is $\sim \Delta$, hence in k it is $\Delta/\hbar v_F$, so by indeterminancy principle $\Delta \mathbf{k} \cdot \Delta r \sim 1$ we have,

$$\Delta r \sim \hbar v_F / \pi \Delta \equiv \xi_0 (\equiv$$
 "pair radius")

(Technically, $F(r) \sim \exp(-r/\xi')$, $\xi' \sim \xi_0$)

In the dirty system, pair wave function F is given by

$$F(\mathbf{r},\mathbf{r}') = \sum_{n} u_{n} v_{n} \varphi_{n}(\mathbf{r}) \varphi_{\bar{n}}(\mathbf{r}')$$
$$\equiv \sum_{n} u_{n} v_{n} \varphi_{n}(\mathbf{R} + \mathbf{r}/2) \varphi_{\bar{n}}(\mathbf{R} - \mathbf{r}'/2)$$

so is technically a function also of COM variable *R*. So let's define

 $\overline{F(r)} \equiv \overline{F(R + r/2, R - r'/2)}$ where average is over R

What is dependence of $\overline{F(r)}$ on relative coordinate r? Rewrite

$$\overline{F(r)} = \sum_{n} (\Delta/2E_n) \overline{\varphi_n(\mathbf{R} + \mathbf{r}/2)\varphi_n^*(\mathbf{R} - \mathbf{r}'/2)}$$

since $\varphi_{\bar{n}} \equiv \varphi_n^*$

Intuitive (semiclassical) argument:

 $\overline{F(\mathbf{r})}$ will drop below its $\mathbf{r} = 0$ value as soon as difference in phase of the product $\varphi_n(\mathbf{R} + \mathbf{r}/2) \varphi_n^*(\mathbf{R} - \mathbf{r}'/2)$ for different n becomes $\sim 2\pi$. Semiclassically, a wave packet with spread in energy $\Delta\epsilon$ will be dephased (indeterminacy!) in a time $\Delta t \sim \hbar/\Delta\epsilon$. In our case $\Delta\epsilon \sim \Delta$, so dephasing time is

 $\Delta t \sim \hbar / \Delta$

How far does the packet travel in Δt ? In pure metal, $r \sim v_F t$ so $\Delta r \sim \hbar v_F / \Delta$

leading to $r_p \sim \hbar v_F / \Delta$ as above. But in a dirty metal ($l \ll \xi_0$) motion is diffusive, and we have

$$r^2 \sim D\Delta t$$
 $D \sim \frac{1}{3} v_F$

so putting $\Delta t \sim \hbar / \Delta$

$$r_p \sim (\hbar v_F l/\Delta)^{1/2}$$

or since $\xi_0 \sim \hbar v_F / \Delta$

 $r_p \sim (\xi_0 l)^{1/2}$ (dirty li

(dirty limit)

i.e. pair radius decreases by factor $(l/\xi_0)^{1/2}$ (which can be $\ll 1$). (Also in limit $T \to T_c$, i.e. $\rho_s^{(dirty)}(T) \sim (l/\xi_0)^{1/2} \rho_s^{(clean)}(T)$).

(b) Superfluid density

The superfluid density ρ_s can be defined in two apparently different ways:

(1) as the coefficient of the dependence of the GL free energy on "bending" of the GL order parameter, for A = 0,

$$\Delta F = \frac{1}{2} \rho_s v_s^2 \qquad \text{with } v_s \equiv \frac{\hbar}{2m} (\nabla \varphi) \qquad \Psi \sim |\Psi| expi\varphi$$
for A = 0

(2) as the (diamagnetic) response of the current to a weak transverse EM vector potential,

$$J = -\rho_s (\frac{e}{m})^2 A$$

(In pure case at T = 0, $\rho_s = nm$ so recover London equation) To see that the two definitions are equivalent, consider a thin superconducting ring in a weak circumferential (i.e. transverse) vector potential A: then must generalize definition of v_s to

$$v_{s} = \frac{\hbar}{2m} (\nabla \varphi - \frac{2eA}{\hbar})$$

If A is weak, SVBC enforces $\varphi = const.$ so

$$\nu_{s} = -\frac{e}{m}A$$
$$\Rightarrow \qquad \Delta F = \frac{1}{2}\rho_{s}(\frac{e}{m})^{2}A^{2}$$

but quite generally, $J = -\partial (\Delta F) / \partial A$

$$\mathbf{J} = -\rho_s (\frac{e}{m})^2 A$$

in accordance with second definition.

J		A
	\square	

To estimate effects of disorder on ρ_s (at T = 0), proceed as follows: Although we have up to now assumed that when Ais a function of r the current J(r) is related to A(r) by the London relation

$$J(r) = -\rho_s \left(\frac{e}{m}\right)^2 A(r)$$

this is actually not quite right. In fact, the more correct formula is

$$J(r) = \int K(r,r')A(r')dr'$$

For the pure case the "range" of K(r, r') = K(r - r') is ~ the pair radius ξ_0 . In fact the exact formula in BCS theory is close to Pippard's original guess,

$$K(r-r') \sim -\frac{3ne^2}{4\pi m\xi_0} \frac{1}{|r-r'|^2} exp - |r-r'|/\xi_0$$

If A(r) is slowly varying over distances $\sim \xi_0$, this gives back the London relation

$$J(r) \cong A(r) \int K(r-r') dr' = -\frac{ne^2}{m} A(r)$$

Now, if $l \leq \xi_0$, expect intuitively that induced current falls off as $e^{-|r-r'|/l}$, i.e.

$$K(r - r') \sim (prefactor x)exp - |r - r'|(\frac{1}{\xi_0} + \frac{1}{l})$$
(Pippard)

Hence, integral is reduced by factor

$$\frac{1/\xi_0}{1/\xi_0 + 1/l} \equiv \frac{1}{1 + \xi_0/l} \qquad \sim l/\xi_0, \text{ for } l \ll \xi_0.$$

Hence in dirty limit,

 $\rho_s^{dirty} \sim (l/\xi_0) \rho_s^{clean} \ll \rho_s^{clean}$

(also in limit $T \rightarrow T_c$).

Effects of disorder in language of GL theory $(T \rightarrow T_C)$:

$$\mathcal{F}\{\Psi(r):T\} = (\alpha_0(T - T_c)|\Psi|^2 + \frac{1}{2}\beta_0|\Psi|^4 + \gamma_0|\nabla\Psi|^2)$$

In dirty limit ($l \ll \xi_0$ but still $k_F l \gg 1$)

$$\begin{array}{c} \alpha_0^{\text{dirty}} \cong \alpha_0^{\text{clean}} \\ \beta_0^{\text{dirty}} \cong \beta_0^{\text{clean}} \end{array} \right] \quad \text{so, } \Psi_{\text{dirty}}(T) \cong \Psi_{\text{clean}}(T)$$

but,

$$\gamma_0^{\text{dirty}} \sim \left(\frac{\lambda}{\xi_0}\right) \gamma_0^{\text{clean}} \ll \gamma_0^{\text{clean}}$$

Recall:

$$\xi(T) \sim (\gamma_0 / \alpha_0 (T - T_c))^{1/2} \\ \lambda(T) \sim (\gamma_0 |\Psi(T)|^2)^{-1/2}$$

Thus,

$$\xi_{\text{dirty}}(T) \sim (l/\xi_0)^{1/2} \xi_{\text{clean}}(T)$$
$$\lambda_{\text{dirty}}(T) \sim (\xi_0/l)^{1/2} \lambda_{\text{clean}}(T)$$

 $\begin{array}{l} \Rightarrow \quad \kappa_{\text{dirty}} \equiv (\lambda/\xi)_{\text{dirty}} \sim (\xi_0/l) \kappa_{\text{clean}} \gg \kappa_{\text{clean}} \\ \Rightarrow \quad \text{alloying makes system much more type-II.} \end{array}$

in particular,

$$H_{c1}^{\text{dirty}} \sim \lambda_{\text{dirty}}^{-2} \ll H_{c1}^{\text{clean}}$$
$$H_{c2}^{\text{dirty}} \sim \xi_{\text{dirty}}^{-2} \gg H_{c2}^{\text{clean}}$$

B. Magnetic disorder

Now we have

$$\hat{H} = \hat{H}_0 + \hat{V}$$

single-electron Inter-electron interaction

but now

$$\hat{H}_0 = \sum_i (\hat{p}_i/2m) + U(r_i:\sigma_i)$$

so now TRI (Time Reversal Invariance) is broken, and state $|\overline{n}, -\sigma\rangle$ (when $\varphi_{\bar{n}}(\mathbf{r}) \equiv \varphi_{n}^{*}(\mathbf{r})$) is no longer degenerate with $|n, \sigma\rangle$, indeed is in general not even an energy eigenstate.

Two obvious proposals for GS:

(a) Pair in exact eigenfunctions of single-particle Hamiltonian, i.e. if exact eigenstates of H_0 for $\sigma = \downarrow$ are denoted φ_m , pair off n with some $m \neq n$.

Then KE is much the same as in pure (BCS) case. However,

$$\langle V \rangle \sim V_0 \sum_{mm'} \int dr \varphi_n^*(r) \varphi_m^*(r) \varphi_{m'}(r) \varphi_{n'}(r)$$

and since we no longer have $\varphi_{\bar{n}}(r) = \varphi_n^*(r)$, (etc.) the integral is oscillating and hence very small. This scheme is usually very energetically disadvantageous.

(b) Continue to pair in time-reversed states, even though these are no longer eigenstates of \hat{H}_0 . How much extra energy does this cost? Suppose "lifetime for different scattering of \uparrow and \downarrow " is $\tau_s \equiv \hbar \Gamma_s^{-1}$ then by indeterminacy principle extra energy necessary to keep state of \downarrow the time-reverse of that of \uparrow is

~ $\Gamma_s \Rightarrow$ extra energy required ~ $\Gamma_s \times$ no. of perturbed states ~ $\Gamma_s(\Gamma_s dn/d\varepsilon) \equiv$ $\Gamma_s^2 dn/d\varepsilon$.

On the other hand, this scheme keeps the whole of the pure-state condensation energy, which is

 $E_{\text{cond}}^{(\text{pure})} \sim -\Delta_0^2(\frac{dn}{d\varepsilon})$ ($\Delta_0 \equiv \text{gap of pure system}$)

Hence we expect that this scheme will give an energy lower than the *N*-state provided $|E_{\text{cond}}^{(\text{pure})}| > \Gamma_s^2 dn/d\varepsilon$, i.e. condition for magnetic impurities to suppress superconductivity completely is

$$\Gamma_s \gtrsim \Delta_0$$

which is equivalent to $l_s \leq \xi_0$. (i.e. mean free path against spindependent scattering \leq (pure metal) pair radius). Actually, exact calculation (Abrikosov-Gor'kov) shows that at T = 0 condition is in fact simply $\Gamma_s > \Delta_0$).