Shanghai Jiao Tong University Lecture 10 2017

Anthony J. Leggett Department of Physics
University of Illinois at Urbana-Champaign, USA and
Director, Center for Complex Physics
Shanghai Jiao Tong University

The Josephson Effect

Josephson effect occurs when 2 bulk superconductors connected by weak link, i.e. region which allows passage of electrons but with (much) increased difficulty.

Examples:
(1) Tunnel oxide (S-I-S) junction: schematically,

(2) Proximity (S-N-S) junction

(3) Constriction ('microbridge')

(4) Point contact

Original Josephson predictions made for case (1), often but not always valid for other cases.

2 equations involving $\Delta \varphi$ (drop in phase of order parameter Ψ across junction, i.e. $\arg \left(\Psi_{L}^{*} \Psi_{R}\right)$:

1. $I=I_{C} \sin \Delta \varphi \quad \longleftarrow \quad$ disspationless supercurrent
critical current, $\sim 1 \mathrm{nA}-1 \mathrm{~mA}$

2. $\frac{d}{d t} \Delta \varphi=\frac{2 e V}{\hbar}$
voltage (electrochemical potl) drop across junction

Fundamental significance of Josephson effect: critical current I_{c} corresponds (see below) to characteristic energy $I_{C} \Phi_{0} / 2 \pi \sim$ $20 \mathrm{mK}-20,000 \mathrm{~K}$, i.e. often $\ll k_{B} T_{\text {room }}$, yet this tiny energy controls aspects of the system (e.g. trapped flux in ring) which are by any reasonable definition macroscopic! (see below)

"Derivation" of second Josephson equation (Bloch):

Assume thickness of ring >> λ_{L} but self-inductance negligible (i.e. $L I_{C} \ll \Phi_{0}$) so for $I \leq I_{C}$ flux through ring is externally applied AB flux Φ.

If contour C is well inside
penetrations depth, the electric current $J(r)$ on $C=0$. But $J(r) \propto$ $(\nabla \varphi(r)-2 e A(r) / \hbar)$, so $\nabla \varphi(r)=$ $2 e A(r) / \hbar$. We can integrate from A to B and, since thickness of junction << radius of ring, extend integral of RHS to full circle, whereupon it gives $2 \pi \Phi / \Phi_{0}$. Hence, defining $\Delta \varphi$ as phase drop from A to B :

$$
\Delta \varphi=2 \pi \Phi / \Phi_{0} \quad \longleftarrow \quad \begin{aligned}
& \text { fundamental relation for } \\
& \text { Josephson circuits }
\end{aligned}
$$

Differentiation with respect to time gives

$$
\frac{d}{d t} \Delta \varphi=\frac{2 \pi}{\Phi_{0}} \frac{d \Phi}{d t}
$$

voltage drop across junction but by Faraday's law $d \Phi / d t=V_{\text {circ }}(t)=V(t)$, so
since bulk superconductor shorts out $V_{\text {circ }}$
so $\quad \frac{d}{d t} \Delta \varphi=\frac{2 \pi}{\Phi_{0}} V \equiv \frac{2 e V(t)}{\hbar}$ i.e. 2 nd Josephson equation
This equation is rather generally valid for any kind of weak link.

Derivation of 1st Josephson equation (also Bloch):

Consider dependance of free energy $F(\Phi: T)$ of system on AB flux Φ. By Byers-Yang theorem, F must be periodic in Φ with period $h / e \equiv \Phi^{s p} \equiv 2 \Phi_{0}$. Also, by TRI.
(time-reversal invariance)
$F(\Phi)=F(-\Phi)$. Hence
$F(\Phi, \mathrm{~T})=\sum_{n} A_{n}(T) \cos \left(2 \pi n \Phi / 2 \Phi_{0}\right)$ and since $\Delta \varphi=2 \pi \Phi / \Phi_{0}$

$$
F(\Phi: T)=\sum_{n=0}^{\infty} A_{n}(T) \cos (n \Delta \varphi / 2)
$$

quite generally valid, independently of nature of weak link.

Suppose t is the matrix element for a single electron (not a Cooper pair!) to traverse the barrier. Then by an extension of the argument used above to obtain $\Delta \varphi=2 n \Phi / \Phi_{0}$, we see that the term in n involves n single-particle traversals of the ring, and thus of the barrier, so that the amplitude for this process $\propto t^{n}$. Since the term in $n=0$ is independent of Φ, the first "interesting" term is apparently $\mathrm{n}=1$.

This term does occur in "mesoscopic" rings; however, it requires phase coherence of the single-electron wave functions around the ring, $\Rightarrow R \lesssim l_{\varphi}$.
"phase breaking" length

Hence in practice for most systems involving Josephson junctions, the term $n=1$ (and more generally odd- n) is negligibly small. Then changing the notation so that $n / 2->n$, we find

$$
F(\Phi, T)=\sum_{n=0}^{\infty} A_{n}(T) \cos (n \Delta \varphi) \quad A_{n}(T) \propto t^{2 n}
$$

general for weak links with no single-electron phase coherence

Simplest case is $t \rightarrow 0$ (typical for tunnel oxide junctions, original Josephson case): then neglect $n>1$ and find (- sign for convenience!)

$$
F(\Phi, T)=-E_{\mathrm{J}} \cos (\Delta \varphi)
$$

However, quite generally we have for the current flowing in the ring (and thus through the junction)

$$
I=\partial F / \partial \Phi=\frac{2 \pi}{\Phi_{0}} \partial F / \partial(\Delta \varphi)
$$

and so

$$
I=I_{c} \sin \Delta \varphi \quad I_{c}=\left(2 \mathrm{n} \Phi_{0}\right) E_{\mathrm{J}} \equiv(2 e / \hbar) E_{\mathrm{J}}
$$

i.e. the 1st Josephson equation.

In the more general case $(t \nrightarrow 0)$ the free energy need not be a single-valued function of $\Delta \varphi(\bmod 2 \pi)$. Suppose by applying constant V we "crank up" $\Delta \varphi$. What happens at $\Delta \varphi=\pi$?
(a) nonhysteretic case (original Josephson case): $|\Psi| \rightarrow 0$ in junction \Rightarrow phase drop $\Delta \varphi$ "slips" from π to $-\pi$
(b) hysteretic case (typical e.g. for microbridge): $|\Psi| \nrightarrow 0$, so $\Delta \varphi$ increases beyond π with increase of KE. Eventually (cf. I. 4) $|\Psi|$ decreases and I reaches a max value I_{C}

What determines I_{C} (i.e. $\left.E_{J}\right)$?
(a) "Toy" model of tunnel-oxide junction: extend GL description under barrier $(|z|<L / 2)$ but since $|\Psi(z)| \rightarrow 0$, neglect term in $|\Psi|^{4}$

Schrodinger problem, with mass $m_{p} \equiv 2 m_{e l}$, potential $V_{p}(z) \equiv 2 V_{e l}(z)$, energy eigenvalue $\mu_{p} \equiv 2 \mu_{e l}$

In limit $L \rightarrow \infty$, solution starting from LHS is

$$
\begin{aligned}
& \Psi_{L}(z)=\Psi_{L}(\infty) \exp \left(-\int_{-\frac{L}{2}}^{z} \sqrt{2 m_{p}\left(2 V_{0}-2 \mu\right)} d z\right) \\
& \Psi_{L}(\infty) \equiv\left|\Psi_{\infty}\right| e^{-i \Delta \varphi / 2}
\end{aligned}
$$

and thus starting from RHS is

$$
\begin{aligned}
& \Psi_{R}(z)=\Psi_{R}(\infty) \exp \left(-\int_{z}^{\frac{L}{2}} \sqrt{2 m_{p}\left(2 V_{0}-2 \mu\right)} d z\right) \\
& \Psi_{R}(\infty) \equiv\left|\Psi_{\infty}\right| e^{+i \Delta \varphi / 2}
\end{aligned}
$$

For $L \nrightarrow \infty$, must superpose:

$$
\Psi(z)=\Psi_{L}(z)+\Psi_{R}(z) \equiv \Psi_{\Delta \varphi}(z)
$$

The dependence of the energy on $\Delta \varphi$ must come entirely from the cross-terms between Ψ_{R} and Ψ_{L}

$$
E_{J}(\Delta \varphi) \sim\left\{\int \Psi_{L}^{*}(z) \Psi_{R}(z)+\text { c. c. }\right\}
$$

This expression is proportional to $\cos (\Delta \varphi)$ and to the WKB factor $\exp \left(-\int_{-L / 2}^{L / 2} \sqrt{2 m_{p}\left(2 V_{0}-2 \mu\right)} d z\right)$: since the integrand is twice that for single-electron tunneling, we have $f_{\mathrm{WKB}} \sim|t|^{2}$. Thus,

$$
E_{J}(\Delta \varphi)=A|t|^{2} \cdot \cos (\Delta \varphi)
$$

But the constant A is tricky! At first sight $A>0$, but this cannot be right, since the solution for $\Delta \varphi=0\left(" \Psi_{+}\right.$") is nodeless, whereas that for $\Delta \varphi=\pi$ (" Ψ_{-}") has a node, so that Ψ_{-}must lie higher ($\mathrm{E}_{-}>\mathrm{E}_{+}$) For general gap $\Delta \varphi$

$$
\Psi_{\Delta \varphi}(\mathrm{z}) \equiv \cos (\Delta \varphi / 2) \Psi_{+}(\mathrm{z})+i \sin (\Delta \varphi / 2) \Psi_{-}(\mathrm{z})
$$

so that by linearity of the TISE \longleftarrow time-independent Schrodinger equation

$$
\begin{gathered}
\left.E(\Delta \varphi)=(\text { const. }+)\left(E_{+}-E_{-}\right) \cos (\Delta \varphi)\right) \equiv-E_{J} \cos (\Delta \varphi) \\
E_{J} \equiv E_{-}-E_{+}>0
\end{gathered}
$$

A more detailed calculation confirms $E_{J} \propto|t|^{2}:$ since the normal-state resistance R_{N} of the junction $\propto|t|^{-2}$ we have

$$
E_{J} \propto R_{N}^{-1}
$$

(b) More realistic example: "short" microbridge $(L \ll \xi(T))$

In dimensionless form GL free energy is

$$
F\{\Psi(\mathrm{z})\}=\mathcal{F}_{0}(T) \int\left\{-|f|^{2}+\frac{1}{2}|f|^{4}+\frac{1}{2} \xi^{2}(T)\left|\frac{d f}{d z}\right|^{2}\right\} d z
$$

With boundary conditions $f(-\infty)=e^{-i \Delta \varphi / 2}$, $f(+\infty)=e^{+i \Delta \varphi / 2}$. If $\xi(T) \gg L$ and $\Delta \varphi \neq 0$, bending term will dominate, so we minimize it $\Rightarrow \partial^{2} f / \partial z^{2}=0$. Solution:

$$
\begin{aligned}
f & =\frac{1}{2}\left\{\left(1+\frac{\mathrm{Z}}{\frac{L}{2}}\right) e^{\frac{i \Delta \varphi}{2}}+\left(1-\frac{\mathrm{Z}}{\frac{L}{2}}\right) e^{-\frac{i \Delta \varphi}{2}}\right\} \\
& \equiv \cos (\Delta \varphi / 2)+i(z /(L / 2)) \sin (\Delta \varphi / 2)
\end{aligned}
$$

Free energy is dominated by bending term, i.e. by the

$$
\Delta F=\frac{2 A}{L} \mathcal{F}_{0}(T) \xi^{2}(T) \sin ^{2} \Delta \varphi / 2 \quad \text { (A = cross-section) }
$$

or using $\mathcal{F}_{0}(T) \xi^{2}(T)=\hbar^{2} /(2 m)\left|\Psi_{\infty}(T)\right|^{2}$

$$
\Delta F=\frac{\hbar^{2} A}{2 m L}\left|\Psi_{\infty}\right|^{2}(1-\cos \Delta \varphi)
$$

so that

$$
E_{J}=\frac{\hbar^{2}}{2 m L}\left|\Psi_{\infty}\right|^{2}
$$

Note again $E_{J} \propto R_{N}^{-1}($ in sense that it $\propto A / L)$
(c) Realistic (Bardeen-Josephson) model of tunnel junction (result only)
(Ambegaokar-Baratoff): start from single-electron tunnelling, express matrix elements in terms of Bogoliubov quasiparticles, then coherence factors [not discussed in these lectures] give nontrivial dependence on $\Delta \varphi$. Result at $T=0$

$$
\mathrm{I}_{\mathrm{c}}=\frac{\pi \Delta}{\mathrm{eR}_{\mathrm{N}}} \quad\left(\equiv \frac{2 \pi E_{J}}{\Phi_{0}}\right)
$$

or at non-zero T

$$
I_{C}=\left(\frac{\pi \Delta}{e R_{N}}\right) \tanh (\Delta(T) / 2 T)
$$

$A B$ formula
usually fairly well satisfied in junctions between "classic" superconductors

The dc SQUID

$I=I_{1}+I_{2}=I_{c}\left(\sin \Delta \varphi_{1}+\sin \Delta \varphi_{2}\right)$
but, $\Delta \varphi_{1}$ and $\Delta \varphi_{2}$ are not independent! Analogously to above discussion of single ring,

$$
\Delta \varphi_{A D}=\frac{2 e}{\hbar} \int_{D}^{A} A \cdot d l
$$

$$
\Delta \varphi_{C B}=\frac{2 e}{\hbar} \int_{B}^{C} A \cdot d l
$$

so if contributions to \int from junctions themselves negligible,

$$
\Delta \varphi_{1}-\Delta \varphi_{2}=2 \pi \Phi / \Phi_{0}
$$

Hence if $\xi \equiv \frac{1}{2}\left(\Delta \varphi_{1}+\Delta \varphi_{2}\right)$,

D C

$$
I=I_{c}\left(\sin \Delta \varphi_{1}+\sin \Delta \varphi_{2}\right)=2 I_{c} \sin \xi \cos \left(\pi \Phi / \Phi_{0}\right)
$$

so total critical current of SQUID or $f(\Phi)$ (attained for $\xi=\pi / 2$) is

$$
I_{c}(\Phi)=2 I_{c}\left|\cos \left(\pi \Phi / \Phi_{0}\right)\right|
$$

with $\max \left(2 I_{c}\right)$ at $\Phi=n \Phi_{0}$ and \min (zero) at $\Phi=(n+1 / 2) \Phi_{0}$.
(Application to magnetometry - lecture 12)

An extension of the argument gives for a single junction subject to a parallel magnetic field

$$
I_{c}(\Phi)=I_{c} \frac{\left|\sin \left(\pi \Phi / \Phi_{0}\right)\right|}{\left|\pi \Phi / \Phi_{0}\right|}
$$

where

$$
\Phi=B L d_{e f f} \longleftarrow d+2 \lambda_{L}
$$

