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SJTU 10.1

The Josephson Effect 

Josephson effect occurs when 2 bulk superconductors connected 
by weak link, i.e. region which allows passage of electrons but with 
(much) increased difficulty.

Examples:

(1) Tunnel oxide (S-I-S) junction: schematically, 

(2) Proximity (S-N-S) junction

(3) Constriction (‘microbridge’)

(4) Point contact

10-20Å
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Original Josephson predictions made for case (1), often but not 
always valid for other cases.
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2 equations involving Δ𝜑 (drop in phase of order parameter Ψ
across junction, i.e. arg (Ψ𝐿

∗Ψ𝑅) :

1. 𝐼 = 𝐼𝑐sin Δ𝜑

2. 
𝑑

𝑑𝑡
Δ𝜑 =

2𝑒𝑉

ℏ

disspationless supercurrent

critical current, ~1 nA − 1 mA

voltage (electrochemical potl) 
drop across junction

(a) dc Josephson effect (current bias): 
Δ𝜑 = sin−1 (𝐼/𝐼𝑐)(𝐼 ≤ 𝐼𝑐)
(b) ac Josephson effect (voltage bias): 

𝐼 = 𝐼𝑐sin (
2𝑒𝑉

ℏ
)𝑡

Fundamental significance of Josephson effect: critical current Ic

corresponds (see below) to characteristic energy 𝐼𝑐Φ0/2𝜋 ∼
20 mK - 20,000 K , i.e. often ≪ 𝑘𝐵𝑇room , yet this tiny energy 
controls aspects of the system (e.g. trapped flux in ring) which 
are by any reasonable definition macroscopic! (see below)

𝑉

Ψ𝐿 ΨR
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If contour C is well inside 
penetrations depth, the electric 
current 𝐽(𝑟) on 𝐶 = 0 . But 𝐽(𝑟) ∝
(𝛻𝜑(𝑟) − 2𝑒𝐴(𝑟)/ℏ) , so 𝛻𝜑(𝑟) =
2𝑒𝐴(𝑟)/ℏ . We can integrate from 𝐴
to 𝐵 and, since thickness of junction 
<< radius of ring, extend integral of 
RHS to full circle, whereupon it gives 
2𝜋Φ/Φ0 . Hence, defining Δ𝜑 as 
phase drop from 𝐴 to 𝐵 :

"Derivation" of second Josephson equation (Bloch):

Assume thickness of ring ≫ 𝜆L but self-inductance negligible (i.e. 
𝐿𝐼𝑐 ≪ Φ0 ) so for 𝐼 ≤ 𝐼𝑐 flux through ring is externally applied AB 
flux Φ.

flux

A B

C

junction

Δ𝜑 = 2𝜋Φ/Φ0 fundamental relation for 
Josephson circuits

Differentiation with respect to time gives

but by Faraday's law 𝑑Φ/𝑑𝑡 = 𝑉circ(𝑡) = 𝑉(𝑡), so

𝑑

𝑑𝑡
Δ𝜑 =

2π

Φ0

𝑑Φ

𝑑𝑡
, 

since bulk superconductor shorts out 𝑉𝑐irc

𝑑

𝑑𝑡
Δ𝜑 =

2𝜋

Φ0
𝑉 ≡

2𝑒𝑉(𝑡)

ℏ
i.e. 2nd Josephson equation

This equation is rather generally valid for any kind of weak link.

voltage drop across junction

so
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Derivation of 1st Josephson equation (also Bloch): 

Consider dependance of free energy 𝐹(Φ: 𝑇) of system on AB 
flux Φ. By Byers-Yang theorem, 𝐹 must be periodic in Φ with 
period ℎ/𝑒 ≡ Φ𝑠𝑝 ≡ 2Φ0 . Also, by TRI.

(time-reversal invariance)

𝐹(Φ) = 𝐹(−Φ). Hence

𝐹(Φ, T) = 
𝑛
𝐴𝑛 𝑇 cos(2𝜋𝑛Φ/2Φ0) and since Δ𝜑 = 2𝜋Φ/Φ0

𝐹(Φ: 𝑇) = 

𝑛=0

∞

𝐴𝑛 𝑇 cos(𝑛Δ Τ𝜑 2)

quite generally valid, independently of nature of weak link.

Suppose t is the matrix element for a single electron (not a 
Cooper pair!) to traverse the barrier. Then by an extension of 
the argument used above to obtain Δ𝜑 = 2𝑛Φ/Φ0 , we see 
that the term in n involves n single-particle traversals of the 
ring, and thus of the barrier, so that the amplitude for this 
process ∝ 𝑡𝑛 . Since the term in 𝑛 = 0 is independent of Φ , 
the first "interesting" term is apparently n=1.

This term does occur in "mesoscopic" rings; however, it 
requires phase coherence of the single-electron wave 
functions around the ring, ⇒ 𝑅 ≲ 𝑙𝜑 .

“phase breaking” length
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Hence in practice for most systems involving Josephson 
junctions, the term n=1 (and more generally odd-n) is 
negligibly small. Then changing the notation so that n/2 -> n, 
we find

𝐹(Φ, 𝑇) = 

𝑛=0

∞

𝐴𝑛 𝑇 cos(𝑛Δ𝜑) 𝐴𝑛(𝑇) ∝ 𝑡2𝑛

general for weak links with no single-electron phase coherence

Simplest case is 𝑡 → 0 (typical for tunnel oxide junctions, 
original Josephson case): then neglect 𝑛 > 1 and find (- sign 
for convenience!)

𝐹(Φ, 𝑇) = −𝐸Jcos(Δ𝜑)

However, quite generally we have for the current flowing in 
the ring (and thus through the junction)

𝐼 = 𝜕𝐹/𝜕Φ =
2𝜋

Φ0
𝜕𝐹/𝜕(Δ𝜑)

and so

𝐼 = 𝐼𝑐 sin Δ𝜑 𝐼𝑐 = 2nΦ0 𝐸J ≡ (2𝑒/ℏ )𝐸J

i.e. the 1st Josephson equation.
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In the more general case (𝑡 ↛ 0 ) the free energy need not 
be a single-valued function of Δ𝜑 (mod 2π) . Suppose by 
applying constant V we "crank up" Δ𝜑. What happens at 
Δ𝜑 = 𝜋 ? 

(a) nonhysteretic case (original Josephson case): |Ψ| → 0
in junction ⇒ phase drop Δ𝜑 "slips" from 𝜋 to −𝜋

(b) hysteretic case (typical e.g. for microbridge): |Ψ| ↛ 0 , 
so Δ𝜑 increases beyond 𝜋 with increase of KE. 
Eventually (cf. l. 4) |Ψ| decreases and 𝐼 reaches a max 
value 𝐼𝑐

What determines 𝐼𝑐 (i.e. 𝐸𝐽 )?

(a) "Toy" model of tunnel-oxide junction: extend GL 
description under barrier (|𝑧| < 𝐿/2 ) but since |Ψ(𝑧)| → 0 , 
neglect term in |Ψ|4

Schrodinger problem, with mass 𝑚𝑝 ≡ 2𝑚𝑒𝑙 , potential 

𝑉𝑝(𝑧) ≡ 2𝑉𝑒𝑙(𝑧) , energy eigenvalue 𝜇𝑝 ≡ 2𝜇𝑒𝑙
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Ψ𝐿 = Ψ∞ 𝑒−𝑖∆𝜑/2

𝑧

𝐿

Ψ𝐿(z) ΨR(z)
𝑉0

Δ𝜑

ΨR = Ψ∞ 𝑒𝑖∆𝜑/2

𝐿/2−𝐿/2

In limit 𝐿 → ∞ , solution starting from LHS is

Ψ𝐿 𝑧 = Ψ𝐿 ∞ exp −ධ
−
𝐿

2

𝑧
2𝑚𝑝 2𝑉0 − 2𝜇 𝑑𝑧

Ψ𝐿(∞) ≡ |Ψ∞|𝑒
−𝑖Δ𝜑/2

and thus starting from RHS is

Ψ𝑅 𝑧 = Ψ𝑅 ∞ exp −න

𝑧

𝐿
2

2𝑚𝑝 2𝑉0 − 2𝜇 𝑑𝑧

Ψ𝑅(∞) ≡ |Ψ∞|𝑒
+𝑖Δ𝜑/2

For 𝐿 ↛ ∞ , must superpose:

Ψ(𝑧) = Ψ𝐿(𝑧) + Ψ𝑅(𝑧) ≡ ΨΔ𝜑(𝑧)
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The dependence of the energy on Δ𝜑 must come entirely 
from the cross-terms between Ψ𝑅 and Ψ𝐿

𝐸𝐽(Δ𝜑) ∼ නΨ𝐿
∗ (𝑧)Ψ𝑅(𝑧) + c. c.

This expression is proportional to cos(Δ𝜑) and to the WKB 

factor exp(−ධ
−𝐿/2

𝐿/2
2𝑚𝑝(2𝑉0 − 2𝜇)𝑑𝑧) : since the 

integrand is twice that for single-electron tunneling, we 
have 𝑓WKB ∼ |𝑡|2 . Thus,

𝐸𝐽(Δ𝜑) = 𝐴|𝑡|2 ⋅ cos(Δ𝜑)

But the constant A is tricky! At first sight A>0, but this 
cannot be right, since the solution for Δ𝜑 = 0 ("Ψ+") is 
nodeless, whereas that for Δ𝜑 = 𝜋 ("Ψ−") has a node, 
so that Ψ− must lie higher (E− > E+ )

ΨΔ𝜑 z ≡ cos (Δ Τ𝜑 2)Ψ+(z) + 𝑖sin(Δ Τ𝜑 2)Ψ−(z)

so that by linearity of the TISE time-independent

Schrodinger equation

𝐸(Δ𝜑) = (const. +)(𝐸+ − 𝐸−)cos(Δ𝜑)) ≡ −𝐸𝐽cos(Δ𝜑),

𝐸𝐽≡ 𝐸− − 𝐸+ > 0

A more detailed calculation confirms 𝐸𝐽 ∝ |𝑡|2 : since the 

normal-state resistance 𝑅𝑁 of the junction ∝ |𝑡|−2 we have

𝐸𝐽 ∝ 𝑅𝑁
−1

For general gap Δ𝜑
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(b) More realistic example: "short" microbridge (𝐿 ≪ 𝜉(𝑇))

In dimensionless form GL free energy is

𝐹{Ψ(z)} = ℱ0(𝑇)∫ {−|𝑓|
2 +

1

2
|𝑓|4 +

1

2
𝜉2(𝑇)|

𝑑𝑓

𝑑𝑧
|2}𝑑𝑧

bulk free energy Ψ(𝑧)/Ψ∞ GL healing length

𝐿

𝜉(𝑇)

Ψ∞ 𝑒−𝑖∆𝜑/2 Ψ∞ 𝑒𝑖∆𝜑/2

𝑧𝑧 = 0

Δ𝜑

With boundary conditions 𝑓(−∞) = 𝑒−𝑖Δ𝜑/2 , 
𝑓(+∞) = 𝑒+𝑖Δ𝜑/2 . If 𝜉(𝑇) ≫ 𝐿 and Δ𝜑 ≠ 0 , bending 
term will dominate, so we minimize it ⇒ 𝜕2𝑓/𝜕𝑧2 = 0. 
Solution:

𝑓 =
1

2
1 +

z
𝐿

2

𝑒
𝑖Δ𝜑

2 + 1 −
z
𝐿

2

𝑒−
𝑖Δ𝜑

2

≡ cos(Δ𝜑/2) + 𝑖(𝑧/(𝐿/2))sin(Δ𝜑/2)

Free energy is dominated by bending term, i.e. by the 
sin Δ𝜑/2 term:
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Δ𝐹 =
2𝐴

𝐿
ℱ0 𝑇 𝜉2 𝑇 sin2Δ𝜑/2 (A = cross-section)

or using ℱ0(𝑇)𝜉
2(𝑇) = ℏ2/(2𝑚)|Ψ∞(𝑇)|

2

Δ𝐹 =
ℏ2𝐴

2𝑚𝐿
Ψ∞

2(1 − cos Δ𝜑)

so that

𝐸𝐽 =
ℏ2

2𝑚𝐿
|Ψ∞|

2

Note again 𝐸𝐽 ∝ 𝑅𝑁
−1 (in sense that it ∝ 𝐴/𝐿 )

(c) Realistic (Bardeen-Josephson) model of tunnel junction 
(result only)

(Ambegaokar-Baratoff): start from single-electron 
tunnelling, express matrix elements in terms of Bogoliubov
quasiparticles, then coherence factors [not discussed in 
these lectures] give nontrivial dependence on Δ𝜑 . Result 
at 𝑇 = 0

Ic =
πΔ

eRN
(≡

2𝜋𝐸𝐽
Φ0

)

or at non-zero 𝑇

𝐼𝑐 = (
𝜋Δ

𝑒𝑅𝑁
)tanh(Δ(𝑇)/2𝑇)

AB formula
usually fairly well satisfied in junctions between "classic" 
superconductors
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A B

CD

1

2

𝐼1

𝐼2

𝐼

∆𝜑1

∆𝜑2

Φ

The dc SQUID

𝐼 = 𝐼1 + 𝐼2 = 𝐼𝑐(sinΔ𝜑1 + sinΔ𝜑2)

but, Δ𝜑1 and Δ𝜑2 are not 
independent! Analogously to 
above discussion of single ring,

Δ𝜑𝐴𝐷 =
2𝑒

ℏ
∫𝐷
𝐴
𝐴 ⋅ 𝑑𝑙

Δ𝜑𝐶𝐵 =
2𝑒

ℏ
∫𝐵
𝐶
𝐴 ⋅ 𝑑𝑙

so if contributions to ∫ from 
junctions themselves negligible,

Δ𝜑1 − Δ𝜑2 = 2𝜋 ΤΦ Φ0

Hence if 𝜉 ≡
1

2
(Δ𝜑1 + Δ𝜑2) ,

𝐼 = 𝐼𝑐 sin Δ𝜑1 + sin Δ𝜑2 = 2𝐼𝑐sin 𝜉cos (𝜋Φ/Φ0)

so total critical current of SQUID or 𝑓(Φ) (attained for 𝜉 = 𝜋/2 ) 
is

𝐼𝑐(Φ) = 2𝐼𝑐|cos (𝜋Φ/Φ0)|

1

2
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𝐵

𝜆𝐿𝐿

𝑑

𝑑𝑒𝑓𝑓 ≡ 𝑑 + 2𝜆𝐿

with max (2𝐼𝑐 ) at Φ = 𝑛Φ0 and min (zero) at
Φ = (𝑛 + 1/2)Φ0 .

(Application to magnetometry - lecture 12)

An extension of the argument gives for a single junction 
subject to a parallel magnetic field

𝐼𝑐(Φ) = 𝐼𝑐
|si n(𝜋 ΤΦ Φ0) |

|𝜋 ΤΦ Φ0 |

where
Φ = 𝐵𝐿𝑑𝑒𝑓𝑓 𝑑 + 2𝜆𝐿


