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The Josephson Effect

Josephson effect occurs when 2 bulk superconductors connected
by weak link, i.e. region which allows passage of electrons but with
(much) increased difficulty.

Examples:

(1) Tunnel oxide (S-1-S) junction: schematically,
10-20A

—>
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(2) Proximity (S-N-S) junction

S

N‘S

(3) Constriction (‘microbridge’)

S S S

B

Original Josephson predictions made for case (1), often but not
always valid for other cases.

(4) Point contact
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2 equations involving A@ (drop in phase of order parameter W
across junction, i.e. arg (¥, W) :

1.1 =1.sinAp <—  disspationless supercurrent

t

critical current, ~1 nA — 1 mA A
L/ B
Z
|4
5 4 Ap = 2eV voltage (elec.troc}?emlcal potl)
dt h drop across junction

(a) dc Josephson effect (current bias):
Ap =sin~t (1/I)(I < 1,)

(b) ac Josephson effect (voltage bias):

- I =Isin (5t

Fundamental significance of Josephson effect: critical current I_
corresponds (see below) to characteristic energy [.®, /21 ~
20 mK - 20,000 K, i.e. often < kgTyo0om , Yet this tiny energy
controls aspects of the system (e.g. trapped flux in ring) which
are by any reasonable definition macroscopic! (see below)
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"Derivation" of second Josephson equation (Bloch):

Assume thickness of ring > A; but self-inductance negligible (i.e.

LI. <K ®gy)soforl < I, flux through ring is externally applied AB
flux ®.

If contour Cis well inside
penetrations depth, the electric
current J(r)on C = 0.But J(r) «
(Vo(r) — 2eA(r)/n) ,so Vo (r) =
2eA(r)/h . We can integrate from A
to B and, since thickness of junction
<< radius of ring, extend integral of
RHS to full circle, whereupon it gives

.— Jjunction

2md /D, . Hence, defining A as flux
phase drop from Ato B :
Ap = 2D /P, S fundamental relation for

Josephson circuits

Differentiation with respect to time gives

a @ = 2mdd voltage drop across junction
dt P, dt '’ {
but by Faraday's law d®/dt = V,..(t) = V(t), so

since bulk superconductor shorts out V.

2eV(t)

d 2T . .
— =V = .e.2nd ) h t
SO It A(p oy V = 1.e N osepnson equation

This equation is rather generally valid for any kind of weak link.
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Derivation of 1st Josephson equation (also Bloch):

Consider dependance of free energy F(®: T) of system on AB
flux ®. By Byers-Yang theorem, F must be periodic in @ with
period h/e = &P = 2d, . Also, by TRI.

t

(time-reversal invariance)

F(®) = F(—®). Hence
F(®,T) = ), An(T)cos(2mn®/2®,) and since Ap = 2P /P,

F(P:T) = z A, (T)cos(nA@/2)
n=0

t

quite generally valid, independently of nature of weak link.

Suppose t is the matrix element for a single electron (not a
Cooper pair!) to traverse the barrier. Then by an extension of
the argument used above to obtain Ap = 2n® /P, , we see
that the term in n involves n single-particle traversals of the
ring, and thus of the barrier, so that the amplitude for this
process « t™ . Since the term in n = 0 is independent of @,
the first "interesting" term is apparently n=1.

This term does occur in "mesoscopic” rings; however, it
requires phase coherence of the single-electron wave
functions around the ring, > R < [, .

t

“phase breaking” length
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Hence in practice for most systems involving Josephson
junctions, the term n=1 (and more generally odd-n) is
negligibly small. Then changing the notation so that n/2 -> n,
we find

F(®,T) = z A, (T) cos(nAg) A, (T) o t2"
n=0

t

general for weak links with no single-electron phase coherence

Simplest case is t — 0 (typical for tunnel oxide junctions,
original Josephson case): then neglect n > 1 and find (- sign
for convenience!)

F(®,T) = —Ejcos(Agp)

However, quite generally we have for the current flowing in
the ring (and thus through the junction)

I = 0F /0d = == 0F /d(Ap)
0
and so

I =1.sinAp I, = (2ndy)E} = (2e/h)E

i.e. the 1st Josephson equation.
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In the more general case (t - 0 ) the free energy need not
be a single-valued function of A¢ (mod 2m) . Suppose by
applying constant V we "crank up" A¢@. What happens at
Ap =m?

(a) nonhysteretic case (original Josephson case): |¥| = 0
in junction = phase drop Ag "slips" from T to —m

(b) hysteretic case (typical e.g. for microbridge): [¥| » 0,
so A increases beyond m with increase of KE.
Eventually (cf. |. 4) || decreases and I reaches a max
value I,

What determines I, (i.e. E} )?

(a) "Toy" model of tunnel-oxide junction: extend GL
description under barrier (|z| < L/2 ) but since |¥(z)| = 0,
neglect term in |P|*

Schrodinger problem, with mass m,, = 2m,,; , potential
Vp(z) = 2V, (2) , energy eigenvalue p), = 2,



SJTU 10.7

—L/2 L/2

A . .
P, = W le~20/2 Py = [Woo|e20/2
Vy M
v, | X [ %RE
v "/ \.\
t t
Agp
VA —l

In limit L — oo, solution starting from LHS is

Y, (z) = ¥, (0)exp <— f_zé\/Zmp(ZVo — 2,u)dz>
W, (0) = |Woo|e A4/

and thus starting from RHS is

W, (2) = Wy (00)exp | — \/Zmp(ZVO—Z,u)dZ

N'SNIP

Wg(0) = |Woo|e 2972
For L » oo, must superpose:

Y(z) = ¥, (2) + Pr(2) = Ypp(2)
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The dependence of the energy on A must come entirely
from the cross-terms between W, and ¥,

E)(Ap) ~ { |9 @@ + <. c.}

This expression is proportional to cos(A¢) and to the WKB
L/2 :
factor exp(— f—L/Z \/Zmp(ZVO — 2u)dz) : since the

integrand is twice that for single-electron tunneling, we
have fWKB ~ |t|2 . ThUS,

E/(Ap) = Alt|* - cos(Ap)

But the constant A is tricky! At first sight A>0, but this
cannot be right, since the solution for Ap =0 ("W.") is
nodeless, whereas that for A¢ = m ("W_") has a node,

so that W_ must lie higher (E_ > E, ) For general gap Ag

Wry(z) = cos (A@/2)¥,(z) + isin(A ¢/2)¥Y_(z)

so that by linearity of the TISE <— time-independent
Schrodinger equation
E(Ap) = (const. +)(E, — E_)cos(Ap)) = —E]cos(Ago),
E]E E_ - E+ > O

A more detailed calculation confirms E; o |t]|? : since the
normal-state resistance Ry of the junction « |t|~2 we have

E; < Ry?
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(b) More realistic example: "short" microbridge (L <« ¢(T))

. $(T) .,
4——L—>
N - |
|Wo e 7H40/2 |Woo |e4¢/2
¢ z= 0 + z
Agp

In dimensionless form GL free energy is

FI®(@)} = Fo(DJ {~If > +51fI* + 382D 2L |?}dz

/1 t

bulk free energy Y(z)/We GL healing length

With boundary conditions f(—o0) = e~A¢/2
f(+0) = et8¢/2 £ E(T) > L and Ap # 0, bending
term will dominate, so we minimize it = 0%f/0z* = 0.

Solution:
iAp

f= %{(1 +§) e + (1 —%) e‘T}

= cos(Ap/2) +i(z/(L/2))sin(Ap/2)

Free energy is dominated by bending term, i.e. by the

= Sin A /2 term:
oy
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AF = %7’0 (T)&%(T)sin®A¢@/2 (A = cross-section)

or using Fo(T)E2(T) = h?/(2m)|We (T)|?

2
AF = W, l%(1 — A
o [War (1 = cos A)
so that . }2 o 1

Note again E; « Ry?! (in sense thatitoc A/L )

(c) Realistic (Bardeen-Josephson) model of tunnel junction
(result only)

(Ambegaokar-Baratoff): start from single-electron
tunnelling, express matrix elements in terms of Bogoliubov
quasiparticles, then coherence factors [not discussed in
these lectures] give nontrivial dependence on A . Result
atT =0

[. =

~ eRy d,

or at non-zero T
A
I. = (e’jTN)tanh(A(T) /27T)

AB formula
usually fairly well satisfied in junctions between "classic"

superconductors



The dc SQUID

I =11 + I, = I(sinAgy + sinAgpy)

but, A, and A, are not
independent! Analogously to
above discussion of single ring,

Apap = _f A-dl

Apcp = _f A-dl

so if contributions to | from
junctions themselves negligible,

Agﬂl - A(pz == 2T[ CI)/CDO

Hence if £ = %(Acpl + Ap,),
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— D
Ap,
A B
D C

I = 1.(sin Ap; + sin Ag,) = 21.sin écos (P /D)

so total critical current of SQUID or f(®) (attained for { = /2 )

is

[c(®) = 2Ic|cos (P /D)



with max (21, ) at ® = n®, and min (zero) at
d=mn+1/2)P,.
(Application to magnetometry - lecture 12)

An extension of the argument gives for a single junction
subject to a parallel magnetic field

|sin(t ©/®) |
T ®/ Dy |

[.(®) =1,

where
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