
Anthony J. Leggett
Department of Physics

University of Illinois at Urbana-Champaign, USA

and

Director, Center for Complex Physics  

Shanghai Jiao Tong University

Lecture 11

SHANGHAI JIAO TONG UNIVERSITY

LECTURE 11
2015
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Lecture 11. "Exotic" superconductivity

property
Class

Classic
BKBO 
MgB2

Heavy-
fermions

organics
Ruth-

enates
Fuller-
enes

Ferroni-
ctids

Cupr-
ates

Tc < 25K (√) × √ √ √ × × ×
FL normal state √ √ × × × √ (√) ×
No neighboring 

phase trans.
√ √ × √ √ √ × ×

OP s-wave √ √ ? ? × √ (×) ×
Phonon 

mechanism
√ √ × ? ? √ × ×

Crystal 
structure 

simple
√ × √ × × × × ×

Stoichiometry-
insensitive

√ √ √ √ √ × × ×

How do we know?
1,3,6,7 by direct inspection
2 mostly from T-dependence of (eg) R
that leaves most important differences, 4 and 5
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Phonon versus non-phonon mechanisms

Original BCS prediction: 𝑇𝑐 = 2𝜔𝐷exp − 1/𝑁(0)|𝑉|

Debye freq, ∝ 𝑀−1/2 independent of isotopic mass

thus predict: if superconductors which are chemical identical 
but have different isotopic masses are compared

𝑇𝑐 ∝ 𝑀−𝛼 𝛼 = 1/2

Prediction satisfied by most "classic" superconductors (Al, Sn, 
Pb, ...): a few exceptions, but understood by more 
sophisticated phonon-plus-Coulomb theory (McMillan) giving

𝛼 =
1

2
(1 − 𝐴) 𝐴 > 0 , may be > 1

No examples of classic superconductor with 𝛼 > 1/2 known.

So 𝛼 ≅ 0 (eg cuprates) suggests non-phonon mechanism

However, all evidence (flux quantization, Josephson effect...) 
suggests even exotic superconductivity still based on Cooper 
pairing.

If phonons don't play a role, must be "all-electronic", ie
Coulomb mechanism!
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But Coulomb interaction, even when screened, is intrinsically 
repulsive!

⟨𝐻
^

⟩ = ⟨𝐻0

^

⟩ + ⟨𝑉
^

⟩ 𝐻0

^

≡ 𝑇
^

+ 𝑈
^

𝑉
^

≡ 𝑉
^

coul

kinetic energy potential of static lattice

so prima facie only 2 possibilities:

1. Cooper pairing reduces ⟨𝐻0

^

⟩

2. """ ⟨𝑉
^

⟩

Option 1 ⇒ ⟨𝐻0⟩ in N state (simple Fermi sea) already 
considerably > noninteracting-electron volume

Option 2 ⇒ ⟨𝑉coul⟩ already large in N state

exotic superconductivity ⇒ "strongly correlated" normal 
state

So in either case
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Symmetry of order parameter (OP)

Recall: in BCS theory, general form of gap equation (at T=0) is

Δ𝑘 = −

𝑘′

𝑉𝑘𝑘′ ΤΔ𝑘′ 2 𝜀𝑘′

If 𝑉𝑘𝑘′ = const. ≡ 𝑉0 , solution is simply Δ𝑘 ≡ const. ≡ Δ . 
Then expression for pair wave function (order parameter) in 
k-space, 𝐹𝑘 , is

𝐹𝑘 = Δ/2(𝜀𝑘
2 + |Δ|2)1/2) ≡ 𝐹(|𝑘

→

|)

(i.e. independent of direction 𝑘
→
^

of 𝑘
→

)

and so real-space form is 

𝐹 𝑟
→

= 

𝑘

𝐹𝑘𝑒
𝑖𝑘
→
⋅𝑟
→

= ∫ 𝑘2𝐹 𝑘 exp 𝑖𝑘𝑟cos𝜃 𝑑𝑘𝑑Ω

= ∫ 𝑘2𝐹(𝑘)
sin𝑘𝑟

𝑘𝑟
𝑑𝑘 ≡ 𝐹(|𝑟|) 𝜃 ≡ ∠𝑘

→
^

∙ 𝑟
→
^

(i.e. independent of direction 𝑟
→
^

of 𝑟
→

)

Equivalently, pairs form in spin singlet with 𝑙 = 0 ("s-state")

relative angular momentum



SJTU 11.5

If 𝑉𝑘𝑘′ ≡ 𝑉
𝑘
→
−𝑘
→
′

is slowly varying for |𝑘
→

− 𝑘
→
′ ≲ kF (true in 

almost all "classic" superconductors) this result still holds.

But if 𝑉
𝑘
→
−𝑘
→
′

varies substantially on scale ≲ (as e.g. in 

liquid 3He ), Δ𝑘 and hence 𝐹𝑘 (and 𝐹(𝑟) ) can be anisotropic, 

i.e. Δ𝑘 = Δ(𝑘
→

) = function of direction 𝑘
→
^

as well as of |𝑘| , 

and 𝐹(𝑟
→
) = function of direction of Ԧr. Also, spin state not 

necessarily singlet. This is a generic feature, which remains 
true even when ?? of BCS theory inapplicable. Terminology: 
superconductor with pairing different from simple s-wave 
"exotic" - usually more interesting than s-wave!

If we neglect crystal lattice & spin-orbit (SO) coupling, then 𝐻
^

(or 𝐹) is invariant separately under spatial & spin rotations -> 
both total spin S and total (internal) 
angular momentum L of pairs are good 
quantum numbers: 

𝑆 = 0, 1
𝐿 = 0, 1, 2, 3… (≡ 𝑙)

free energy

However, Pauli principle

𝑆 = 0 associated with even 𝑙 (0, 2, 4… )

𝑆 = 1 associated with odd 𝑙 (1, 3, 5… )
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but even within these assignments, different possibilities: 
example, liquid 3He:
both A and B phases have 𝑆 = 𝐿 = 1, but

A phase has 𝑆𝑧 = 0, 𝐿𝑧 = 1
(with some convenient choice of axes)

B phase has 𝑆 = 1, 𝐿 = 1 coupled to that 𝐽
→

≡ 𝐿
→

+ 𝑆
→

= 0
(in absence of SO coupling)

In the real-life "exotic" superconductors symmetry 
considerations modified:
(1) many are quasi-2D -> symmetry of OP defined only 
within plane
(2) crystal lattice breaks symmetry, e.g. in square lattice 
O 3 → 𝐷2 . 

(only symmetry operations are reflections +𝜋/2 rotations)

Square lattice (Sr2RuO4 , cuprates, ferropnictides,...): some 
possibilities:

s-wave

≅ 𝑙 = 0

d-wave

≅ 𝑙 =2

node

p+ip

≅ 𝑙 = 1
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How do we tell?

(1) spin susceptibility 𝜒 : if 𝑆 = 0 (𝑙 = even ), 𝜒 is reduced 
in S state because to polarize system must break up Cooper 
pairs (c.f. lecture 7). For 𝑆 = 1 pairing effect is either absent 
or reduced, e.g. if 𝑆𝑧 = ±1 (or in 3He-A ) 

𝜒𝑆 = 𝜒𝑁

(2)s-wave state usually has non-zero 
minimum value of excitation energy 
("gap") ⇒ as 𝑇 → 0 number of excitations 
∝ exp(−Δ/𝑇) ⇒ specific heat, etc., 
exponentially small. 
By contrast most (but not all) exotic 
pairing states have "nodes" in gap (Δ → 0

for some 𝑘
→

) -> substantial number of 
excitations as 𝑇 → 0 → specific heat, etc. 
proportional to some power of 𝑇.

(3) Effect of nonmagnetic impurities: for a simple s-wave 
state in free space (BCS case) 𝑇𝑐 is virtually unaffected. For 
the case of an s-wave state in a lattice, expect some 
depression but not to 0. However, for an "exotic" state (p-
wave, d-wave, ...) nonmagnetic impurities have a 
qualitatively similar effect to magnetic impurities in BCS, i.e.

𝑇𝑐 → 0 for Γ ≳ Δ0

relevant scattering rate (rms) gap for pure case

Thus, e.g., the fact that very small concentrations of 
impurities in Sr2RuO4 drive Tc to 0 usually taken as evidence 
for exotic pairing.
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4. Phase-sensitive (Josephson)  experiments

Pb
(s-wave)

Josephson
junction

YBCO

Φ
Josephson
junction

refinement of SQUID geometry

General principle:
Φ = σ𝑖 Δ𝜑𝑖 where Δ𝜑𝑖 includes "internal" phase 

differences due to "roation" of pair wave function
e.g. in YBCO

s-wave d-wave similarly for 
Sr2RuO4 if 𝑝-wave
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s-wave: Δ𝜑1 + Δ𝜑2 = Φ ⇒ max. of 𝐼𝑐 at Φ = (𝑛 + 1/2)Φ0

d-wave: Δ𝜑1 + Δ𝜑2 = Φ+ 𝜋 ⇒ max of 𝐼𝑐 at Φ = (𝑛 + 1/2)Φ0

Generally accepted conclusions:

"internal" phase drop

cuprates 𝑑-wave

Sr2RuO4 𝑝-wave (may be 𝑝 + 𝑖𝑝)

ferropnictides (complicated) 𝑠-wave


