
ON THE STRUCTURE OF A WORLD 
(WHICH MAY BE) DESCRIBED BY 

QUANTUM MECHANICS. 
A. WHAT DO WE KNOW ON THE BASIS OF 

ALREADY PERFORMED EXPERIMENTS? 

 

 

CHSH inequality: 
 

AB + A′B + AB′ − A′B′ ≤ 2 
 
violated by predictions of QM, and  

by experiment! 
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WHAT DOES EXPERIMENTAL VIOLATION 
OF CHSH INEQUALITY IMPLY? 

Must reject (at least) one of 
1. Einstein locality 
2. Induction 
3. MCFD   macroscopic counterfactual 

definiteness. 

A’ 

A’ Had photon been switched into      rather than     .  
A would not have been definite.  But in actuality, A 
is definite.  (bell rings, computer prints out…).  So: 
            at which point did A become definite? 
 

~ 

A 

switch 

  A 

polarizer 

"SCHRODINGER′S CAT!  

here? here? here? here? 

bell 
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MACROSCOPIC QUANTUM COHERENCE (MQC) 

+ + + 

- - - 

“Q = +1” 

“Q = -1” 

macroscopically 
distinct states 
 
Example:   “flux qubit”: 

Supercond. 
ring 

Josephson 
junction 

Existing experiments:  if raw data interpreted in QM terms,  
state at tint is quantum superposition (not mixture!) of  
states         and       . + - 

: how “macroscopically” distinct? 

time 

ti tint tf 

“Q=+1” “Q=-1” 
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Analog of CHSH theorem for MQC: 
Any macrorealistic theory satisfies constraint 
 
<Q(t1)Q(t2)> + <Q(t2) Q(t3)> + <Q(t3)Q(t4)> - <Q(t1)Q(t4)> ≤ 2 
 
which is violated (for appropriate  choices of the ti) by the 
QM predictions for an “ideal” 2-state system 
 
Definition of “macrorealistic” theory: conjunction of  
     1) induction 
     2) macrorealism (Q(t) = +1 or -1 for all t) 
     3) noninvasive measurability (NIM) 
 

In this case, unnatural to assert 3) while denying 2). 
NIM cannot be explicitly tested, but can make “plausible” by 
ancillary experiment to test whether, when Q(t) is known to be 
(e.g.) +1, a noninvasive measurement does or does not affect 
subsequent statistics.  But measurements must be projective 
(“von Neumann”). 

+ 

- 

M 
NIM: 

measuring  
device 

If Q = +1, throw away 
If Q = -1, keep 
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“ALL ELECTRONIC” SUPERCONDUCTIVITY 
(heavy fermions, organics, cuprates, ferropnictides…) 

 

WHERE IS THE ENERGY SAVED? 
Consider “strongly layered” (2D) materials 

(organics, cuprates, ferropnictides, Sr2Ru O4…) 
assume: 

1. Phonons irrelevant to first approximation 
2. inter-unit-cell motion irrelevant to first 

approximation (c-axis) 
 

Then:  
H =  T ∥ + U + V                        

 
 
 
Which of these is saved in N S transition?   
Default option: V           (assume for sake of argument) 
Rigorous theorem (not RPA!): 

𝑉 =     
𝑑𝜔

2𝜋
𝑞

 lm 
1

1 + 𝑉𝑞𝜒𝑜 𝑞𝜔
         

 
 
So, obvious question: 

where in space of 𝑞 and 𝜔 is Coulomb energy  
saved (or not)? 

“Ideal” experimental technique:  transmission EELS 
(P. Abbamonte, J. Zuo (University of Illinois) (reflection)) 
 
 

in-plane KE lattice  
potential 

inter-conduction electron  
Coulomb interaction 

in-plane FT of  
Coulomb interaction 

“bare” density 
response function 
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CONJECTURE: 
(MUCH OF) COULOMB ENERGY SAVED IN REGIME 
OF SMALL q  𝑞 ≲ 0.3Å−1  AND MIDINFRARED 
𝜔 0.1 ≲  𝜔 ≲ 3 − 4 𝑒𝑉  
If that’s true, may have implications for optics, as well as EELS.  
Assume (for sake of argument):  for q ≲ 0.3Å−1, ω ≳ 0.1 eV  

1) ε⊥ qω ≅ ε∥ qω  
2) ε∥ qω  not strongly dependent on q 

          3D dielectric constant 
 
Then: 
optics measures 𝜀 𝜔   
Coulomb energy ∝ −I𝑚

1

1+𝑞
d

2
 𝜖 𝜔 −1

 

 
Note: for “jellium” model 𝜀 𝜔 ~1 − 𝜔𝑝 

2 ∕ 𝜔2  
  

expect crossing of  Re 𝜀  at 𝜔𝑝, but main 
contribution to Coulomb energy from  

𝜔~𝜔𝑞  ≡
𝑞𝑑

2

1
2 
𝜔𝑝 > 𝜔𝑝 

𝜔𝑞

𝜔𝑝
~ 2 ∙ 2 for Bi−2212  

 
hence, not so strange that anomalies in optics for  
N  S occur not around 𝜔𝑝 ~1 ∙ 2 𝑒𝑉  but around 
~2 ∙ 5 − 3 eV! 

↕ 𝑑 
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More quantitatively: 

 if conjecture is correct, what 
(qualitatively) do we expect to happen in 
optics for N →S, for 𝜔 ≲ 𝜔𝑞? 

crucial observation*:  for 0.1 eV ≲ 
ω ≲ 1eV, in Bi-2212 

𝜀 𝜔  ≅ −1 + 𝑖  𝜔𝑝
2 𝜔2  

i.e. 
arg 𝜀~3𝜋 4  

Now, in this regime, 
∆ 𝑉  ~ − ∆ Im 𝜀−1 ~Im ∆𝜀 𝜀2  

but 𝜀−2 ~ i 2 , so 
∆ 𝑉  ~ ∆ Re 𝜀  

Thus, expect in this regime 

(Im 𝜀 irrelevant), Re  decreases 

seen in experiments both in Bi-2212 and 
in 122! 

*El-Azrak et al., Phys. Rev. B 49, 9846 (1994) 
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Classic problem:  system of neutral atoms (e.g. 4He) 

(𝜔 ≪ 𝜔𝑐 ≡ ℏ2m𝑅2) 
Classically.   Δ𝑳 = 𝐼𝑒𝑙𝝎 
 
  ≈ 𝑁𝑚𝑅2   
for quantum gas. 𝑘𝐵𝑇 ≫ ℏ𝜔𝑐 :  Same 
QM’l system with interaction? 
Kohn (1964): consider 
   F as f(𝜔) 
        
Free Energy     
    
A:  Insulator                                    F↑   
   Rotates with annulus  
     (no hysteresis)      
B:  Normal liquid  
   Rotates with annulus 
     (but with hysteresis) 
C:  Superfluid 
   does not rotate with annulus.* 
 

     How to characterize  behavior  A-C in terms of 
         topology of MBWF of system? 
 
*will take this (not persistent currents !) as definition of 
superfluidity 

SUPERFLUIDITY AND “SUPERSOLIDITY”:  
THE TOPOLOGY OF MANY-BODY WAVE FUNCTIONS 

(some problems just don’t go away) 

w 

R 

A 

B 

C 
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Topology of MBWF’S: ODLRO (Yang.1962) 
Boson system: 
       ODLRO if   𝜓(r)𝜓+ (r῾)  ↛  0 for |r -𝒓𝟏|   

General argument that ODLRO is a sufficient condition for 
superfluidity*.  But, $64K question:  
             is it a necessary condition?     
     
To evaluate F(𝜔), must decide how system responds to 
SVBC:         single-valuedness boundary condition. 

 

$64K question: Does adaptation to changed SVBC  
 cost a free energy a 𝜔2? 
If for all possible path:   𝜃𝑖 → 𝜃𝑖 + 2𝜋   (including  “Japanese- bus” 
paths)  MBWF goes to zero exponentially somewhere on path, can 
modify SVBC at no cost in ω (case of insulator) 
But lack of ODLRO says only that this is true for “British-bus” paths. 
(𝜃1𝜃2…fixed)….. 
 
*Noninteracting Bose gas is not a counter example! 
            (cf. df. of “superfluidity”) 
 
 

For 𝜔 = 0,Ψ(𝜃1𝜃2…𝜃𝑖 …𝜃𝑁) 

= Ψ(𝜃1𝜃2…𝜃𝑖 + 2𝑟 …𝜃𝑁) 

For 𝜔 ≠ 0. 

Ψ(𝜃1𝜃2…𝜃𝑖 …𝜃𝑁) = 

exp 2𝜋𝑖
𝜔

𝜔𝑐
Ψ 𝜃1𝜃2…𝜃𝑖 + 2𝜋…𝜃𝑁  

𝜃=0 
𝜃 
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THE LOW-TEMPERATURE PROPERTIES 
OF GLASSES:  THE “CINDERELLA PROBLEM” 

OF CONDENSED MATTER PHYSIES 
 
 
The problem in a nutshell:  below   1 K, the properties of amorphous 
materials (“glasses”) are not only  qualitatively  but quantitatively 
 universal. 
 
E.g.   Dimensionless  absorption 𝑄𝑡

−1 of transverse 
ultrasound in 𝐺𝐻𝑧 range *.  For almost all

†
 amorphous  

materials. 
 

 
𝑄𝑡
−1 = 3 × 10−4± ∼ 25%  ≡ 𝑄𝑜

−1 

*mostly inferred by KK from T-dependent velocity shift 
†
 for a very few materials, less than this:  never greater. 

      

In “standard” (TTLS)             tunneling 2-level systems 

model of glasses. 𝑄𝑡
−1 is product of 4 independent  

faston, each of which fluctuates by   ̴ 5-10.  And yet… 
 
                   phonon strain 
Generic model:    𝐻 ΄ =  𝑒𝑖𝑗𝑇𝑖𝑗𝑖𝑗              generic stress 

⟹ 𝐻 𝑒𝑓𝑓  ~ 4th−order polynomial in 𝒏𝑛𝑚
𝑛𝑚

 

× 
𝑇𝑖𝑗
(𝑚)

𝑇𝑘𝑙
(𝑛)

𝑅𝑛𝑚
3   ⟶

real−space                                
renormalization procedure

  

𝑇𝑖𝑗
1
  𝑇𝑖𝑗

2
 

𝑹12 
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