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solve the Hubbard Model!!

Cooper instability??

QMC



A Critique of Two Metals

R. B. Laughlin
Departrment of Physics

Stanford University
Stanford, California 94305

idea is either missing or improperly understood. Another
indicator that something is deeply wrong is the inability
of anyone to describe the elementary excitation spectrum
of the Mott insulator precisely even as pure phenomenol-
ogy. Nowhere can one find a quantitative band struc-
ture of the elementary particle whose spectrum becomes

A Critique of “A Critique of Two Metals”

Philip W. Anderson and G. Baskaran

Joseph Henry Laboratories of Physics

Princeton University, Princeton, NJ 08544

The fundamental argument is presented in the second paragraph: “Ten years of work
by some of the best minds in theoretical physics have failed to produce any formal demon-
stration”...of the Mott insulating state. The statement would be ludicrous if it were not
so influential. The proviso “at zero temperature” is added, because of course most Mott

concern. It is the tragedy of Mott that although he almost certainly won his Nobel prize

gapped. Nowhere can one find precise information about
the particle whose gapless spectrum causes the param-
agnetism. Nowhere can one find information about the

interactions among these particles or of their potential
bound state spectroscopies. Nowhere can one find precise
definitions of Mott insulator terminology. The upper and
lower Hubbard bands, for example, are vague analogues
of the valence and conduction bands of a semiconduc-
tor, except that they coexist and mix with soft magnetic
excitations no one knows how to describe very well.

for the Mott insulator, Slater, who couldn’t think clearly about finite temperature, won the

publicity battle.
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‘7 Q8

6
o® O o
e
2@

@]

is there a more efficient way?




Luttinger counting theorem
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How do zeros obtain?

= below gap+above gap| [= 0

DetReG(k,w =0) =0

(single band)

strongly correlated gapped systems
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Symmetry Breaking
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Minimal model
for Mottness?




Fermi

liquids
doubly |, ...
occupied {
k

- A
—  / ‘
- Zz—1
- .

P
/,{\\}\J\ ]

N-1 Ef N+l E
F ermi-liquid system

p-h symmetry

NFL

s single
occupancy below
chemical potential

possible?

with time-reversal
symmetry in tact¢

16



dl/dV (arb. units)

di/dV (a.u.)
N
|

L/

theor
theor
asym

Big SIQ C&CUQ 08—|—5

220 °C

I

1versity

universal refusal of
f hole-particle

t the first step of any



single
occupancy

?

particle-hole
asymmetry

18



Fermi

liquids

— 0
H = Z —EF npa—l— /
p,o

(mpt, mpy) conserved currents

Anderson /
Haldane (Gt Cpishec.) 4 objects
2000
3 citations DetM / thM__
proper
SO rotations improper
rotations

DetM = +4+1 — Zy= 0(4) -+ 50(4)




o O O =

S O = O

O = O O

Im

proper Rotations

Majorana basis

CPT + CpT

(CPT

0
0
0

—1

Cpl +Cp

(Cp¢

CPT + CpT

(CpT
Cpl +Cp

(Cpi

S

T

-fT
T
Cpl

)

T

_FT
T
Cpl

)
)

* Cpl — C;r)¢

p-h transformation

20



Fermi
Surface

H =

'

npt — 1 — ”pT} 7 at Fermi
Npy — Npy 2 surface only




How to destroy Fermi liquids?

H = Z ) — €F) Nps + Unppnipy
Odd scaling dimension
under Z> mptmpy] = =2
relevant
New fixed point! interaction
Hatsugai-Kohmoto or Hubbard
Baskaran model Not
necessary!




General HK Model
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Mott transition: composite excitations
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what does the HK model leave out??

Hy, Hy| # 0

dynamical spectral weight transfer
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Superconductivity?




Cooper Instability .
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Cooper Instability
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Pair Susceptibility
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BCS variational wave function
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variational MF wave function
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three variational parameters
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compute free energy
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Two-stage superconductivity in the Hatsugai-Kohomoto-BCS model
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Condensation Energy
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Bogoliubov excitations
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can we explain the color change?
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condensation energy

Optical data are reported on a spectral weight transfer over a broad frequency
range of Bi,Sr,CaCu,Og , 5, when this material became superconducting. Using
spectroscopic ellipsometry, we observed the removal of a small amount of
spectral weight in a broad frequency band from 10 cm ™~ to at least 2 X 10*
cm™ ', due to the onset of superconductivity. We observed a blue shift of the

ab-plane plasma frequency when the material became superconducting, indi-

cating that the spectral weight was transferred to the infrared range. Our

observations are in agreement with models in which superconductivity is ac-
companied by an increased charge carrier spectral weight. The measured spec-

tral weight transfer is large enough to account for the condensation energy in

these compounds.
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Superfluid Density

Mottness-induced suppression
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opology + Strong Correlations?

Are Exact Statements Possible?

Haldane +HK model
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