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Figure 3. a) Normalized flourescence[53] yield at the O K edge of La2−xSrxCuO4+δ.
In the undoped sample, the only absorption occurs at 530eV, indicated by B. Upon
doping the intensity at B is transferred to the feature at A, located at 528eV. b)
Gaussian fits to the absorption features at A and B with the background subtracted.
Reprinted from Chen, et al. Phys. Rev. Lett. 66, 104 (1991).

can be understood simply by turning on the hopping[4]. When the hopping is non-zero,

empty sites are created as a result of the creation of double occupancy. Such events

increase the number of available states for particle addition and as a consequence the

LESW increases faster than 2x. It is important to recall that the argument leading to

the LESW exceeding 2x relies on the strong coupling limit. If this limit is not relevant

to the ground state at a particular filling, the previous argument fails.

2.2. Breakdown of Fermi Liquid Theory: More than just Electrons

A natural question arises. Is spectral weight transfer important? A way of gauging

importance is to determine if spectral weight transfer plays any role in a low-energy

theory. A low-energy theory is properly considered to be natural if there are no relevant

perturbations. Several years ago, Polchinski[42] and others[43, 44, 45] considered Fermi
liquid theory from the standpoint of renormalisation. They found[42, 43, 44, 45] that as

long as one posits that the charge carriers are electrons, there are no relevant interactions

(except for pairing) that destroy the Fermi liquid state. The setup[42] is as follows.

Decompose the momenta into the Fermi momentum and a component orthogonal to

non-BCS

2-particle probe 1-particle 
SC state
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collective excitation from double occupancy:
incoherence at low energies

2e `boson’



Key idea: similar to Bohm/Pines
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+f(ω)Lint(c, ϕ) +f̃(ω)Lint(c, ϕ̃)

Ψ†Ψ Ψ̃†Ψ̃

quadratic form:
composite or bound

excitations of 
ϕ†ciσ

dispersion
of propagating

light modes

f(ω) = 0

Exact low-energy Lagrangian
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composite excitations 
determine spectral 
density: Mott gap

γ = 0γ̃ = 0
(π, π)(0, 0)

each momentum has SD at two distinct 
energies

∆ = U − 4dt
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spectral function

quadratic

LIR = Lspinstuff(ci, c
†
i ) + Lcharge(ci, c

†
i ,ϕi)
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Electron Dispersion

Fermi liquid states cross 
chemical 
potential

ϕi = ϕ ∀ i no electron-like
quasi-particles

anywhere!!
homogeneous
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ϕj = eij·πϕ ϕj = eij·.9πϕ

why choose
these funky solutions?

they minimize the free
energy (no order)

Expt.

ϕj = ϕ
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Pseudogap=`confinement’ 

More 
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lower 
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ature



Jiunn-Yuan Lin, et al. (Taiwan)

More addition
states in PG:

new charge e states
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gauge-gravity duality
(Maldacena, 1997)

UV

QFTIR gravity



AdSd+1

geometrize RG flow
β(g) is local

 `Holography’

RN black
 hole

ds2 = L2

�
−dt2

r2
+

d�x2

r2
+

dr2

r2

�

{t, �x, r} → {λt,λ�x,λr}

 symmetry:

r → 0
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ψ Dirac Eq.

S0

Charged system probe

JψOψ

UV

in-falling boundary
 conditions

Retarded Green function:G =
b

a

ψ(r → ∞) ≈ arm + br−m

=f(UV,IR)

Jµ

RN-AdS
ds2, At

geometry



dynamically generated gap: Mott gap 
(for probe fermions)

What gravitational theory gives rise to a gap in ImG without 
spontaneous symmetry breaking?
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√
−giψ̄(D −m)ψ `non-Fermi liquids’

?? Mott Insulator

fermions in RN Ads_{d+1} coupled to a gauge field
through a dipole interaction

√
−giψ̄(D −m− ipF )ψconsider

bottom-up schemes

AdS-RN
MIT, Leiden group
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P=0

Fermi 
surface
peak

dynamically generated gap:

spectral
weight transfer

confirmed by Gubser, Gauntlett, 2011

P > 4.2

How is the spectrum modified?
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UV-IR mixing

T ↑

p1

p3

σ(ω) 
Ω-1cm-1

VO2
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