Bose metals as a disruption of the KT transition in thin films

D. Dalidovich
J. Wu
\[\beta = \frac{d \ln g(L)}{d \ln L} = d - 2 \]

no metals for \(d \leq 2 \)

2D MIT

2D IST

Kravchenko 1995

unresolved?

Goldman 1989
insulator-superconductor transition

\[\rho = \frac{h}{4e^2} \]

Hebard/Paalanen
phase-only critical bosons

\[H = E_C \sum_i p^{2}_{\theta_i} + J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \]

\[\frac{\partial}{\partial \theta_i} \longleftrightarrow \theta_i \]

\[\langle n_i \rangle \neq 0 \quad \text{and} \quad \langle \theta_i \rangle \neq 0 \]

\[g = E_C / J \]

vortex-particle duality
(MPAF 1990)

\[\Delta \theta \Delta n \geq \hbar \]
insulator-superconductor transition

\[\rho = \# \frac{\hbar}{4e^2} \]

\[\# = \infty \]
\[g_c \]
\[\# = 1 \]
\[\# = 0 \]

\[\sigma = 0 \]
\[g = \frac{E_C}{J} \]
\[\rho = 0 \]

\[G(k, \omega) = k^{d/2-\eta} F \left(\frac{\omega}{k^z} \right) \]
does this theory really work?
non-universality of ρ_c?
is a metallic phase for bosons possible?
activated region shifts to lower T as H increases

metal below H_{c2}

mason/kapitulnik (2000)
not a refrigeration artifact

bose metal

\[\rho \propto (H - H_{\text{SM}})^\gamma \quad \gamma \approx 3 \]
phases disrupting superconductivity

dissipation (Kapitulnik)

Bose-Hubbard model (disordered)

disorder-localised insulator (short-range hopping)
Do Superconductors Have Zero Resistance in a Magnetic Field?

Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742
(Received 31 October 2000; published 23 July 2001)

We show that dc voltage versus current measurements of a YBa$_2$Cu$_3$O$_{7-\delta}$ film in a magnetic field can be collapsed onto scaling functions proposed by Fisher et al. [Phys. Rev. B 43, 130 (1991)] as is widely reported in the literature. We find, however, that good data collapse is achieved for a wide range of critical exponents and temperatures. These results strongly suggest that agreement with scaling alone does not prove the existence of a phase transition. We propose a criterion to determine if the data collapse is valid, and thus if a phase transition occurs. To our knowledge, none of the data reported in the literature meet our criterion.

In this paper we have focused on the absence of a vanishing dc resistance—the popular definition of a superconductor. One can also use ac measurements [21] to probe an Ohmic to inductive transition in complex linear impedance [22]. However, we are not aware of ac measurements that demonstrate the Ohmic to inductive transition in both magnitude and phase, which is necessary for agreement with scaling. A critical comparison between dc and ac on the same sample would be important for this issue.

In conclusion, we have found that a data collapse is not sufficient evidence for a transition to zero resistance since the critical temperature at which this occurs is not uniquely determined. In addition to obeying scaling, I-V data must also satisfy the opposite concavity signature we propose in order to determine a T_c below which the resistance vanishes. Since our I-V data plus many in the literature do not show this signature, a transition to zero resistance has not yet been demonstrated despite the fact that much of the data scales. Furthermore, this signature can be used as a criterion to judge future I-V data in order to help settle the controversy surrounding critical phenomena in the high-temperature superconductors.
is a Bose metal possible?

\[\sigma_{dc} = \lim_{T \to 0} \lim_{\omega \to 0} \sigma(\omega, T) \]

collision-dominated transport Damle/Sachdev (hydrodynamic regime)
\[H = E_C \sum_i p_{\theta_i}^2 + J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \]
qp collisions

\[n \propto e^{-m/T} \]

\[\tau \propto e^{m/T} \]

\[\sigma \propto n\tau \sim O(1) \]

\[\sigma = \frac{2}{\pi} \frac{e^{*2}}{\hbar} \]
the insulator is a metal

but it is fragile

\[\frac{1}{\tau} \rightarrow \frac{1}{\tau} + \eta \]

\[\sigma \rightarrow 0 \]
\[F[\psi] = \int d^2 r \int d\tau \left\{ \left[\left(\nabla + \frac{ie^*}{\hbar} \vec{A}(\vec{r}, \tau) \right) \psi^*(\vec{r}, \tau) \right] \right. \\
\left. \cdot \left[\left(\nabla - \frac{ie^*}{\hbar} \vec{A}(\vec{r}, \tau) \right) \psi(\vec{r}, \tau) \right] \right. \\
+ \kappa^2 |\partial_\tau \psi(\vec{r}, \tau)|^2 + m^2 |\psi(\vec{r}, \tau)|^2 \right\} + L_{\text{dis}} \\
L_{\text{dis}} = \eta \sum_{\vec{k}, \omega_n} |\omega_n| |\psi(\vec{k}, \omega_n)|^2 \]

\text{ohmic dissipation}
\[
\sigma(\omega) = \frac{(e^*)^2}{2\pi\hbar\omega} \int_0^\infty k^3 dk \int_{-\infty}^{\infty} \coth \frac{z}{2T} dz \left[(G^R(z) - G^A(z)) \\
[G^R(z) + G^A(z) - G^R(z + \omega) - G^A(z - \omega)] \right].
\]

\[
G^{R(A)}(z) = (k^2 + m^2 - \kappa^2 z^2 \pm i\eta z)^{-1}
\]

\[
\sigma(\omega = 0) = \frac{(e^*)^2}{2\pi\hbar} \int_0^\infty k^3 dk \int_{-\infty}^{\infty} \frac{dx}{\sinh^2 x} \times \frac{8\eta^2 T^2 x^2}{[(\epsilon_k^2 - 4T^2\kappa^2 x^2)^2 + 4T^2\eta^2 x^2]^2}
\]

\[
\sigma = \frac{2e^2}{\pi\hbar} \frac{\pi\kappa^2 T}{\eta} \ln \frac{\kappa T}{m} \quad \eta/\kappa \ll m
\]
include interactions

\[m = \kappa T \exp \left(-\frac{2\pi|\Delta|}{UT} \right) \quad |\Delta| \gg \kappa T \gg \eta/\kappa \]

\[\Delta = \delta + U[\Lambda + O(\eta/\kappa)]/4\pi\kappa \]

\[\sigma = \frac{2e^2}{\pi h} \frac{\pi\kappa^2 T}{\eta} \ln \frac{\kappa T}{m} \quad \eta/\kappa \ll m \]

\[\sigma = \frac{4e^2}{h} \frac{\pi\kappa^2 |\Delta|}{\eta U} \quad \eta/\kappa < m \]

T-independent conductivity
but conductivity diverges at low T

$$\sigma = \frac{e^2}{h} \exp \left(\frac{4\pi |\Delta|}{UT} \right) \quad \kappa T < \eta/\kappa$$

dissipation alone is not enough
\[H = -E_C \sum_i \left(\frac{\partial}{\partial \theta_i} \right)^2 - \sum_{\langle i, j \rangle} J_{ij} \cos(\theta_i - \theta_j) \]

\[P(J_{ij}) = \frac{1}{\sqrt{2\pi J^2}} \exp \left(-\frac{(J_{ij} - J_0)^2}{2J^2} \right) \]

3-phases

- phase glass
- paramagnet
- superconductor
\[\ln[Z] = \lim_{n \to 0} \left([Z^n] - 1 \right)/n \]

\[S_i = (\cos \theta_i, \sin \theta_i) \]

\[Q^{ab}_{\mu \nu}(\vec{k}, \vec{k}', \tau, \tau') = \langle S^a_{\mu}(\vec{k}, \tau) S^b_{\nu}(\vec{k}', \tau') \rangle \]

\[D(\tau - \tau') = \lim_{n \to 0} \frac{1}{Mn} \langle Q^{aa}_{\mu \mu}(\vec{k}, \vec{k}', \tau, \tau') \rangle \]

Edwards-Anderson
order parameter

\[\Psi^a_{\mu}(\vec{k}, \tau) = \langle S^a_{\mu}(\vec{k}, \tau) \rangle \]

SC order
\[\mathcal{F}[\Psi, Q] = \mathcal{F}_{SG}(Q) + \sum_{a, \mu, k, \omega_n} (k^2 + \omega_n^2 + m^2)|\Psi^a_\mu(k, \omega_n)|^2 \]

\[-\frac{1}{\kappa t} \int d^d x \int d\tau_1 d\tau_2 \sum_{a, b, \mu, \nu} \Psi^a_\mu(x, \tau_1) \Psi^b_\nu(x, \tau_2) Q^{ab}_{\mu \nu}(x, \tau_1, \tau_2) \]

\[+ U \int d\tau \sum_{a, \mu} [\Psi^a_\mu(x, \tau) \Psi^a_\mu(x, \tau)]^2 \]

\[Q^{ab}_{\mu \nu} (k, \omega_1, \omega_2) = \beta (2\pi)^d \delta^d(k) \delta_{\mu \nu} \left[D(\omega_1) \delta_{\omega_1 + \omega_2, 0} \delta_{ab} + \beta \delta_{\omega_1, 0} \delta_{\omega_2, 0} q^{ab} \right]. \]

\[D(\omega) = -|\omega|/\kappa \]

\[z = 2 \]
\(\mathcal{F}_{\text{gauss}} = \sum_{a,k,\omega_n} (k^2 + \omega_n^2 + \eta|\omega_n| + m^2)|\psi^a(\vec{k},\omega_n)|^2 \)

\[-\beta q \sum_{a,b,k,\omega_n} \delta_{\omega_n,0} \psi^a(\vec{k},\omega_n)[\psi^b(\vec{k},\omega_n)]^* \]

new term propagator is replica off-diagonal

\(G_{ab}^{(0)}(\vec{k},\omega_n) = G_0(\vec{k},\omega_n)\delta_{ab} + \beta G_0^2(\vec{k},\omega_n)q\delta_{\omega_n,0} \)
conductivity

\[\sigma(\omega = 0, T \to 0) = \frac{2}{3} \frac{\eta q_{\text{EA}} e^*}{m^4} \frac{e^*}{h} \quad z = 2 \]

\[\propto (g - g_c)^{-2z
u} \]

experiments: \[\rho \propto (H - H_{\text{SM}})^\gamma \quad \gamma \approx 3 \]
is a phase glass stiff?

\[\Delta F \propto \rho_s k^2 ? \]
\[\rho_s \neq 0 \]

\[\rho_s = 0 \]
\[\Delta E \propto L^\theta \]
\[\theta < 0 \text{ no stiffness} \]

FIG. 3. Scaling plot of the root-mean-square current \(I_{\text{rms}} \) in two dimensions according to the form expected if \(T_c = 0 \), Eq. (10). We see acceptable scaling of the data at low temperatures. Deviations at higher \(T \) are presumably due to corrections to scaling. This plot is for \(\theta = -1/\nu = -0.39 \).

Numerical Study of Order in a Gauge Glass Model

J. M. Kosterlitz and N. Akino
Department of Physics, Brown University, Providence, Rhode Island 02912

FIG. 1. Size \(L \) dependence of domain wall energy in 2D. Both RT and BT measurements are shown. Solid lines are power-law fits. Error bars are not shown if smaller than symbol size.
Do Superconductors Have Zero Resistance in a Magnetic Field?

Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742

(Received 31 October 2000; published 23 July 2001)

We show that dc voltage versus current measurements of a YBa$_2$Cu$_3$O$_{7-8}$ film in a magnetic field can be collapsed onto scaling functions proposed by Fisher et al. [Phys. Rev. B 43, 130 (1991)] as is widely reported in the literature. We find, however, that good data collapse is achieved for a wide range of critical exponents and temperatures. These results strongly suggest that agreement with scaling alone does not prove the existence of a phase transition. We propose a criterion to determine if the data collapse is valid, and thus if a phase transition occurs. To our knowledge, none of the data reported in the literature meet our criterion.
\[F_{\text{gauss}} = \sum_{a, \vec{k}, \omega_n} (k^2 + \omega_n^2 + \eta |\omega_n| + m^2) |\psi^a(\vec{k}, \omega_n)|^2 \]

\[-\beta q \sum_{a, b, \vec{k}, \omega_n} \delta_{\omega_n, 0} \psi^a(\vec{k}, \omega_n)[\psi^b(\vec{k}, \omega_n)]^* \]

bose metal

is the ground state of bosons in a finite magnetic field?

is the vortex glass a metal?

glassy physics
experiments+
theory
indicate
yes
what is z in the bose metal?

$z = 2$

bose metal has particle hole symmetry (phase glass)
\[\rho_{xy} = 0 \quad \text{p-h symmetry} \]
vortex glass is a metal