Holography and Mottness: a Discrete Marriage

Thanks to: NSF, EFRC (DOE)

M. Edalati Ka Wai Lo R. G. Leigh
Mott Problem
emergent gravity
Mott Problem
What interacting problems can we solve in quantum mechanics?
PHYSICS 501, FALL 2012

GRADUATE QUANTUM MECHANICS I

SYLLABUS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Weeks</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>Linear vector spaces and bra-ket notation</td>
</tr>
<tr>
<td>2-3</td>
<td>1.0</td>
<td>Transition from classical to quantum mechanics</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>Postulates of quantum mechanics</td>
</tr>
<tr>
<td>5-7</td>
<td>2.0</td>
<td>One-dimensional problems; Harmonic oscillator</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>Higher dimensions; elementary treatment of identical particles</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>Symmetries, quantum numbers, and conserved quantities</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>Rotational invariance and angular momentum</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>The hydrogen atom</td>
</tr>
<tr>
<td>14-15</td>
<td>2.0</td>
<td>Spin and addition of angular momentum</td>
</tr>
</tbody>
</table>

Chapter numbers refer to text of Shankar.

Please send any comments on this page to dhy@physics.rutgers.edu.
Rutgers University Department of Physics and Astronomy

PHYSICS 501, FALL 2012

GRADUATE QUANTUM MECHANICS I

SYLLABUS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Weeks</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>Linear vector spaces and bra-ket notation</td>
</tr>
<tr>
<td>2-3</td>
<td>1.0</td>
<td>Transition from classical to quantum mechanics</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>Postulates of quantum mechanics</td>
</tr>
<tr>
<td>5-7</td>
<td>2.0</td>
<td>One-dimensional problems; Harmonic oscillator</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>Higher dimensions; elementary treatment of identical particles</td>
</tr>
<tr>
<td>11</td>
<td>1.5</td>
<td>Symmetries, quantum numbers, and conserved quantities</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>Rotational invariance and angular momentum</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>The hydrogen atom</td>
</tr>
<tr>
<td>14-15</td>
<td>2.0</td>
<td>Spin and addition of angular momentum</td>
</tr>
</tbody>
</table>

Chapter numbers refer to text of Shankar.

Please send any comments on this page to dhv@physics.rutgers.edu.
This is an **optimistic** syllabus. Material that may be omitted for lack of time is in blue.

I Relativistic Wave Equations
 A The problem: Lorentz covariance
 B The Klein-Gordon equation
 C Dirac’s equation
 1 Derivation, Dirac matrices (chiral and Bjorken and Drell)
 2 Massless case: Weyl’s equation
 3 Operators, angular momentum and spin
 4 Hamiltonian form and equations of motion
 5 Bispinor notation
 D Non-relativistic reduction of the Dirac equation and the g factor of the electron.
 E Lorentz covariance of Dirac’s equation
 1 Meaning, example of KG equation
 2 Solution and interpretation
 3 Bilinear covariants.
 4 Generalizations
 F Single particle solutions of the Dirac equation
 1 Counting states, projection operators
 2 Momentum eigenstates and their high energy limit.
 G More applications of the Dirac equation if time permits.

II Approximation Methods
 A Stationary state perturbation theory
A. Perturbations of the harmonic oscillator
B. Fine structure of hydrogenic atoms
C. Weak and strong field Zeeman effect in hydrogen

B Variational methods
1 Basic theorem
2 Practical considerations
3 Extensions to excited states, interlacing theorem, partial diagonalization.
4 Examples: Ground state of helium, bound states in open geometries

C Semiclassical methods
1 The WKB approximation, the classical limit and the Hamilton-Jacobi equation.
2 The need for connection formulae and their derivation
3 Interpretation of the connection formulae.
4 Applications: Bohr-Sommerfield quantization, quantum tunneling, etc.
5 Reflection above the barrier.

D Adiabatic approximation
1 Discussion and “derivation”
2 Transition rate in the adiabatic limit — relation to WKB
3 Born-Oppenheimer approximation
4 Berry’s phase, theory, applications, relation to Hannay’s angle.

III Many particle systems
A Indistinguishability and statistics
B Exchange symmetry, spin and statistics
C Two particle systems, exchange interaction, effective spin dependence, the classical limit and the significance of statistics.
D Permutation symmetry
1 Permutations
2 The totally symmetric and totally antisymmetric representations
3 Slater determinant
9 Obtaining wave functions from Young tableaux

E Second quantization
 1 Classical field theory and quantum wave mechanics
 2 Quantizing a classical field
 3 Fock space, creation and annihilation operators
 4 Statistics
 5 One particle and two particle operators
 6 The propagator in 2nd quantization
 7 Application to the degenerate Fermi gas
 A. Density of states of a Fermi gas
 B. Surface energy of nuclei

8 Thomas Fermi approximation for high Z atoms

9 Thomas Fermi for a conducting surface

IV Scattering theory

A Elementary kinematics of scattering theory: Cross section, scattering amplitude, unitarity and the optical theorem

B Partial waves, spherical Bessel’s functions, phase shifts, partial wave unitarity

C Calculating phase shifts: scattering length and effective range.

D Formal scattering theory:
 1 Scattering states and the Lippmann Schwinger equation
 2 Potential scattering
 3 T-matrix, S-matrix and the Born approximation
 4 Phase shifts reconsidered.

E Striking phenomena at low energies: bound states, resonances, virtual states

F Analytic properties of scattering amplitudes.

G Extended example: The separable potential: bound states, scattering resonances, convergence of the Born Approximation.

H Multichannel scattering and Fano-Feshbach Resonances.
of solvable interacting QM problems

of interacting QM problems
\[
\frac{\text{# of solvable interacting QM problems}}{\text{# of interacting QM problems}} = 0
\]
interacting systems \[H = T + V \]
interacting systems \[H = T + V \]
interacting systems $H = T + V$

easy

impossible
interacting systems

\[H = T + V \]

\[r_s = \frac{\langle V \rangle}{\langle T \rangle} \]

- easy
 \[r_s < 1 \]

- impossible
interacting systems

\[H = T + V \]

\[r_s = \langle V \rangle / \langle T \rangle \]

- easy
 - \[r_s < 1 \]
 - \textquote{free} systems (perturbative interactions)
 - metals, Fermi liquids, ...

- impossible
interacting systems \[H = T + V \]

\[r_s = \frac{\langle V \rangle}{\langle T \rangle} \]

- **easy**
 - \(r_s < 1 \)
 - "free" systems
 - (perturbative interactions)
 - metals, Fermi liquids, ...

- **impossible**
 - short-range repulsions are irrelevant
interacting systems

\[H = T + V \]

\[r_s = \langle V \rangle / \langle T \rangle \]

easy

\[r_s < 1 \]

`free' systems
(perturbative interactions)

metals, Fermi liquids,...

short-range repulsions are irrelevant

impossible

\[r_s \gg 1 \]

strongly coupled systems
(non-perturbative)

QCD, high-temperature superconductivity,...
why is strong coupling hard?
why is strong coupling hard?
why is strong coupling hard?

emergent low-energy physics (new degrees of freedom not in UV)
why is strong coupling hard?

emergent low-energy physics (new degrees of freedom not in UV)
why is strong coupling hard?

emergent low-energy physics (new degrees of freedom not in UV)
why is strong coupling hard?

emergent low-energy physics (new degrees of freedom not in UV)
why is strong coupling hard?

UV

emergent low-energy physics (new degrees of freedom not in UV)

IR

Proton

Neutron

\(\pi^0 \)
What computational tools do we have for strongly correlated electron matter?
Is strong coupling hard because we are in the wrong dimension?
Yes

I LOVE THE SMELL OF D-BRANES IN THE MORNING
\[\mathcal{L} = T - g\varphi^4 \cdots \]
\[\mathcal{L} = T - g \varphi^4 \ldots \]
\[\mathcal{L} = T - g\phi^4 \ldots \]

Wilsonian program (fermions: new degrees of freedom)
\[\mathcal{L} = T - g\phi^4 \cdots \]

Wilsonian program (fermions: new degrees of freedom)
The Wilsonian program involves new degrees of freedom.

The Lagrangian is given by:

\[\mathcal{L} = T - g \phi^4 \cdots \]

The coupling constant is defined as:

\[g = 1/\text{ego} \]
\[\mathcal{L} = T - g \varphi^4 \cdots \]

- **Wilsonian program** (fermions: new degrees of freedom)
- **IR** → **UV QFT**
- **Locality in energy**
- **Coupling constant**
 \[g = 1/\text{ego} \]

\[\frac{dg(E)}{d\ln E} = \beta(g(E)) \]
Implement E-scaling with an extra dimension.

$$\frac{dg(E)}{d\ln E} = \beta(g(E))$$

Locality in energy.

$$\mathcal{L} = T - g\varphi^4 \cdots$$

coupling constant

$$g = 1/\text{ego}$$

Wilsonian program (fermions: new degrees of freedom)
gauge-gravity duality (Maldacena, 1997)

Implement E-scaling with an extra dimension

\[\mathcal{L} = T - g \varphi^4 \cdots \]

Coupling constant
\[g = 1/\text{ego} \]

Locality in energy

\[\frac{dg(E)}{d\ln E} = \beta(g(E)) \]
what’s the geometry?
what’s the geometry?

\[
\frac{d g(E)}{d \ln E} = \beta(g(E)) = 0
\]

scale invariance (continuous)
what's the geometry?

\[\frac{dg(E)}{d\ln E} = \beta(g(E)) = 0 \]

scale invariance (continuous)

\[E \rightarrow \lambda E \]
\[x^\mu \rightarrow x^\mu / \lambda \]
what’s the geometry?

\[
\frac{dg(E)}{d\ln E} = \beta(g(E)) = 0
\]

scale invariance (continuous)

\[
E \rightarrow \lambda E
\]
\[
x^\mu \rightarrow x^\mu / \lambda
\]

solve Einstein equations
what’s the geometry?

\[
\frac{dg(E)}{d\ln E} = \beta(g(E)) = 0
\]

scale invariance (continuous)

\[E \rightarrow \lambda E\]

\[x^\mu \rightarrow x^\mu / \lambda\]

solve Einstein equations

\[ds^2 = \left(\frac{u}{L}\right)^2 \eta_{\mu\nu} dx^\mu dx^\nu + \left(\frac{L}{E}\right)^2 dE^2\]

anti de-Sitter space
Holography

\[ds^2 = -dt^2 + d\vec{x}^2 \]
Holography
Holography

\[ds^2 = \frac{L^2}{r^2} \left(-dt^2 + d\bar{x}^2 + dr^2 \right) \]

\[r = \frac{L^2}{E} \]
Holography

\[ds^2 = \frac{L^2}{r^2} \left(-dt^2 + d\vec{x}^2 + dr^2 \right) \]

\[r \to 0 \]

\(\text{AdS}_{d+1} \)

\[r = \frac{L^2}{E} \]

\(\beta(g) \) is local

geometrize RG flow

\{ t, \vec{x}, r \} \to \{ \lambda t, \lambda \vec{x}, \lambda r \}
Holography

AdS

$ds^2 = \frac{L^2}{r^2} (-dt^2 + d\vec{x}^2 + dr^2)$

$r \rightarrow 0$

$\beta(g)$ is local geometrize RG flow

$\Lambda_1 \Lambda_2 \Lambda_3 \Lambda_4 \Lambda_5$

UV

IR

weakly-coupled classical gravity in d+1

$\{t, \vec{x}, r\} \rightarrow \{\lambda t, \lambda \vec{x}, \lambda r\}$

symmetry:

QFT in d-dimensions

weakly-coupled classical gravity
dual construction
dual construction
dual construction

fields ϕ

operators O

UV QFT
dual construction

fields \rightarrow \text{duality} \rightarrow \text{operators}

\phi

UV

QFT
dual construction

\[e^{\int d^d x \phi \circ \mathcal{O}} \]

fields \[\phi \]
duality
operators \[\mathcal{O} \]

UV

QFT
Claim: $Z_{QFT} = e^{-S_{\text{on-shell}}^{\text{on-shell}}(\phi(\phi \partial_{\text{ADS}} = J_{\phi}))}$
How does it work?

some fermionic system
How does it work?

fields

UV

QFT

some fermionic system

duality

ψ
How does it work?

- Dirac equation
- Fields
- Duality
- Some fermionic system
How does it work?

Dirac equation fields

duality

some fermionic system
Dirac equation fields

some fermionic system

How does it work?

\[\psi \approx ar^m + br^{-m} \]

source response

UV QFT

Dirac equation

duality
How does it work?

Dirac equation

Green function: \[G_\mathcal{O} = \frac{b}{a} = f(UV,IR) \]

Source

Response

Some fermionic system

Duality

Fields

\[\psi \approx ar^m + br^{-m} \]
Why is gravity holographic?

Entropy scales with the area not the volume: gravity is naturally holographic.
\[Z_{QFT} = e^{-S_{\text{on-shell}}^{\text{on-shell}}(\phi(\phi\partial_{ADS}=J_\mathcal{O}))} \]
$Z_{QFT} = e^{-S_{\text{on-shell}}^{\text{on-shell}}} (\phi (\phi_{\partial ADS} = J_{\phi}))$
What holography does for you?
What holography does for you?

Landau-Wilson

Hamiltonian

\[\xi_t \propto \xi^z \]

long-wavelengths

RG equations
What holography does for you?

Landau-Wilson

Hamiltonian

$\xi_t \propto \xi^z$

long-wavelengths

RG equations
What holography does for you?

Landau-Wilson

Hamiltonian

\[\xi_t \propto \xi^z \]

long-wavelengths

RG equations

holography

RG=GR
What holography does for you?

- Landau-Wilson Hamiltonian
- \(\xi_t \propto \xi^z \)
- long-wavelengths
- RG equations

holography

RG=GR

strong-coupling is easy
What holography does for you?

Landau-Wilson

Hamiltonian

\[\xi_t \propto \xi^z \]

long-wavelengths

RG equations

holography

RG=GR

strong-coupling is easy

microscopic UV model not easy (need M-theory)
What holography does for you?

Landau-Wilson

Hamiltonian

\[\xi_t \propto \xi^z \]

long-wavelengths

RG equations

holography

RG=GR

strong-coupling is easy

microscopic UV model not easy (need M-theory)

so what (currents, symmetries)
Can holography solve the Mott problem?
What is a Mott Insulator?

NiO insulates d^8?
What is a Mott Insulator?

NiO insulates d^8?

EMPTY STATES = METAL
What is a Mott Insulator?

NiO insulates d^8?

EMPTY STATES = METAL

band theory fails!
What is a Mott Insulator?

NiO insulates d^8?

perhaps this costs energy

EMPTY STATES = METAL

band theory fails!
Mott Problem: NiO (Band theory failure)

(N rooms N occupants)

\[U \gg t \]
Half-filled band

Free electrons
Half-filled band

Free electrons

$U \gg t$

charge gap

gap with no symmetry breaking!!
Mott Insulator-Ordering
Mott Insulator-Ordering = Mottness
Mott Insulator-Ordering = Mottness

its all about order. No Mottness

Slater
Mottness

Mott Insulator-Ordering = Mottness

its all about order. No Mottness

Slater

of course it does!! order is secondary

Anderson
Mott Insulator-Ordering = Mottness

its all about order. No Mottness

of course it does!! order is secondary
Mott Insulator-Ordering = Mottness

its all about order.
No Mottness

of course it does!!
order is secondary

Slater

Anderson
Why is the Mott problem important?
Why is the Mott problem important?

$\text{Y Ba}_2\text{Cu}_3\text{O}_7$

Cuprate Superconductors
Why is the Mott problem important?

\[\frac{U}{t} = 10 \gg 1 \]

interactions dominate: Strong Coupling Physics

Y Ba Cu \(_2\) O \(_{3+7}\) Cuprate Superconductors
Experimental facts: Mottness
Experimental facts: Mottness

Experimental facts: Mottness

Transfer of spectral weight to high energies beyond any ordering scale

Recall, $eV = 10^4 K$

Experimental facts: Mottness

\[\Delta = 0.6 \text{eV} > \Delta_{\text{dimerization}} \]

(Mott, 1976) \[\frac{\Delta}{T_{\text{crit}}} \approx 20 \]

\[T_{\text{crit}} \approx 20 \]

\[T = 360 \text{K} \quad T = 295 \text{K} \]

Transfer of spectral weight to high energies beyond any ordering scale

Recall, \(eV = 10^4 K \)

Experimental facts: Mottness

$$\Delta = 0.6 eV > \Delta_{\text{dimerization}}$$

(Mott, 1976) \[\frac{\Delta}{T_{\text{crit}}} \approx 20 \]

Recall, \(eV = 10^4 K \)

Transfer of spectral weight to high energies beyond any ordering scale
What gravitational theory gives rise to a gap in $\text{Im}G$ without spontaneous symmetry breaking?
What gravitational theory gives rise to a gap in ImG without spontaneous symmetry breaking?

dynamically generated gap: Mott gap (for probe fermions)
What has been done?

$$\sqrt{-g}i\bar{\psi}(D - m)\psi$$

AdS-RN
MIT, Leiden group
What has been done?

\[\sqrt{-g} \bar{\psi} (D - m) \psi \]

AdS-RN
MIT, Leiden group
\[\sqrt{-gi\bar{\psi}(D - m)\psi} \]

AdS-RN
MIT, Leiden group

What has been done?

\[G(\omega, k) = \frac{Z}{v_F(k - k_F) - \omega - \Sigma} \]

Fermi peak
\[\sqrt{-g} i \bar{\psi} (D - m) \psi \]

What has been done?

\[G(\omega, k) = \frac{Z}{v_F (k - k_F) - \omega - \Sigma} \]

Fermi peak

MIT, Leiden group

AdS-RN

marginal Fermi liquid
\[
\sqrt{\cdot} - \overline{\psi}(D - m) \psi
\]

AdS-RN

MIT, Leiden group

What has been done?

Fermi peak

\[
G(\omega, \mathbf{k}) = Z_v F(k - k_F) - \omega - \Sigma_m
\]

canonical Fermi liquid
decoherence \rightarrow \text{Mott Insulator}
\[S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} \bar{\psi}(\Gamma^M D_M - m + \cdots) \psi \]
\[S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \cdots) \psi \]
$S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} i \bar{\psi}(\Gamma^M D_M - m + \cdots) \psi$

what is hidden here?

consider $\sqrt{-g} i \bar{\psi}(\not{D} - m - i p F) \psi$
QED anomalous magnetic moment of an electron
(Schwinger 1949)

\[S_{\text{probe}}(\psi, \bar{\psi}) = \int d^d x \sqrt{-g} i \bar{\psi} (\Gamma^M D_M - m + \cdots) \psi \]

\[\text{consider} \quad \sqrt{-g} i \bar{\psi} (\mathcal{D} - m - ipF) \psi \]

\[F_{\mu\nu} \Gamma^{\mu\nu} \]

what is hidden here?
How is the spectrum modified?

$P=0$
How is the spectrum modified?

P=0

Fermi surface peak
How is the spectrum modified?

$P=0$

$P > 4.2$

Fermi surface peak
How is the spectrum modified?

$P = 0$

$P > 4.2$

Fermi surface peak
How is the spectrum modified?

$P=0$

$P > 4.2$

Fermi surface peak

dynamically generated gap:
How is the spectrum modified?

$P=0$

$P > 4.2$

Fermi surface peak

spectral weight transfer

dynamically generated gap:
How is the spectrum modified?

$P = 0$

spectral weight transfer

$P > 4.2$

dynamically generated gap:

confirmed by Gubser, Gauntlett, 2011
Mechanism?

UV

QFT
Mechanism?
emergent spacetime symmetry

AdS_2

UV

QFT
emergent spacetime symmetry

Mechanism?
Mechanism?

emergent spacetime symmetry

operators \mathcal{O}

$\psi \rightarrow \mathcal{O}_\pm$

AdS_2
emergent spacetime symmetry

holography within holography

Mechanism?

operators O

AdS_2

h_{\mp}
Mechanism?

UV

QFT

IR

where is k_F?

AdS

\mathbb{S}_2

emergent spacetime symmetry

holography within holography

holography

emergent spacetime symmetry

operators

where is k_F?

Mechanism?
emergent spacetime symmetry

Mechanism?

operators \mathcal{O}

where is k_F?

holoography within holoography

k_F moves into log-oscillatory region: IR \mathcal{O}_\pm acquires a complex dimension

AdS_2
What does a complex scaling dimension mean?
continuous scale invariance

\[\mathcal{O} = \mu(\lambda)\mathcal{O}(\lambda r) \]
Continuous scale invariance

\[\mathcal{O} = \mu(\lambda)\mathcal{O}(\lambda r) \]

\[1 = \mu(\lambda)\lambda^\Delta \]

\[\Delta = -\frac{\ln \mu}{\ln \lambda} \]
$O = \mu(\lambda)O(\lambda r)$

$1 = \mu(\lambda)\lambda^\Delta$

$\Delta = -\frac{\ln \mu}{\ln \lambda}$

Δ is real, independent of scale
Continuous scale invariance

\[O = \mu(\lambda)O(\lambda r) \]

\[1 = \mu(\lambda)\lambda^\Delta \]

\[\Delta = -\frac{\ln \mu}{\ln \lambda} \]

\[\Delta \text{ is real, independent of scale} \]

What about complex \(\Delta \)?
1 = \mu \lambda^\Delta
\[e^{2\pi in} = 1 = \mu \lambda^\Delta \]
Discrete scale invariance (DSI)

\[e^{2\pi i n} = 1 = \mu \lambda^\Delta \]

\[\Delta = -\frac{\ln \mu}{\ln \lambda} + \frac{2\pi i n}{\ln \lambda} \]

\[n=0: CSI \]
Discrete scale invariance (DSI)

\[e^{2\pi i n} = 1 = \mu \lambda^n \]

\[\Delta = -\frac{\ln \mu}{\ln \lambda} + \frac{2\pi i n}{\ln \lambda} \]

scaling dimension depends on scale

\[\lambda_n = \lambda^n \]
Discrete scale invariance (DSI)

\[e^{2\pi \text{i} n} = 1 = \mu \lambda^\Delta \]

\[\Delta = -\frac{\ln \mu}{\ln \lambda} + \frac{2\pi \text{i} n}{\ln \lambda} \]

scaling dimension depends on scale

\[\lambda_n = \lambda^n \]

magnification

n=0: CSI
Discrete scale invariance (DSI)

\[e^{2\pi i n} = 1 = \mu \lambda^\Delta \]

\[\Delta = -\frac{\ln \mu}{\ln \lambda} + \frac{2\pi i n}{\ln \lambda} \]

scaling dimension depends on scale

\[\lambda_n = \lambda^n \]

magnification

preferred scale

n=0: CSI
analogy

liquid

solid
analogy

liquid

continuous translational invariance

discrete translational invariance

solid
example
example
example
example

\[n \text{ iterations} \]

\[3^{-n} \quad 2^n \]

length

number of segments
Example

n iterations

length: 3^{-n}

number of segments: 2^n

Scale invariance only for $\lambda_p = 3^p$
example

\[D = \frac{-\ln 2}{\ln 3} + \frac{2\pi i n}{\ln 3} \]

scale invariance only for \(\lambda_p = 3^p \)

length: \(3^{-n} \)

number of segments: \(2^n \)

n iterations
discrete scale invariance

hidden scale (length, energy,...)
\[G = \frac{\beta_-(0, k)}{\alpha_-(0, k)} \]

no poles outside log-oscillatory region for \(p > \frac{1}{\sqrt{6}} \)
\[G = \frac{\beta_{-}(0, k)}{\alpha_{-}(0, k)} \]

no poles outside log-oscillatory region for \(p > 1/\sqrt{6} \)

Mott physics and DSI are linked!
is there an instability?
is there an instability?
is there an instability?

\[E \rightarrow E + i\gamma \quad \gamma > 0 \]
is there an instability?

\[E \rightarrow E + i\gamma \quad \gamma > 0 \]

condensate (bosonic)
is there an instability?

\[E \rightarrow E + i\gamma \quad \gamma > 0 \]

\[\langle \phi \rangle \neq 0 \]

condensate (bosonic)

does this happen for fermions?
quasi-normal modes

\[\text{Im}\, \omega < 0 \quad \text{no instability} \]
quasi-normal modes

$\text{Im} \omega < 0$ no instability
quasi-normal modes

but the residue drops to zero: opening of a gap

$\text{Im} \omega < 0$ \hspace{0.5cm} \text{no instability}
\[G(\omega, k) = G(\omega \lambda^n, k) \]
$G(\omega, k) = G(\omega \lambda^n, k)$

discrete scale invariance in energy
$G(\omega, k) = G(\omega \lambda^n, k)$

discrete scale invariance in energy

emergent IR scale
\[G(\omega, k) = G(\omega \lambda^n, k) \]

- discrete scale invariance in energy
- emergent IR scale
- no condensate
$G(\omega, k) = G(\omega \lambda^n, k)$

- discrete scale invariance in energy

- emergent IR scale

- no condensate

- energy gap: Mott gap (Mottness)
continuous scale invariance

\[
\text{discrete scale invariance in energy}
\]
continuous scale invariance

discrete scale invariance in energy

is this the symmetry that is ultimately broken in the Mott problem?
a.) yes

b.) no
a.) yes

b.) no
a.) yes ✓
b.) no
a.) yes
b.) no

if yes: holography has solved the Mott problem

holography

VO_2, cuprates,...
what else can holography do?
Finite Temperature Mott transition from Holography

\[\frac{T}{\mu} = 5.15 \times 10^{-3} \]

\[\frac{T}{\mu} = 3.92 \times 10^{-2} \]
Finite Temperature Mott transition from Holography

\[\frac{\Delta}{T_{\text{crit}}} \approx 20 \] vanadium oxide

\[T/\mu = 5.15 \times 10^{-3} \]

\[T/\mu = 3.92 \times 10^{-2} \]
Finite Temperature Mott transition from Holography

\[\frac{\Delta}{T_{\text{crit}}} \approx 10 \]

\[\frac{\Delta}{T_{\text{crit}}} \approx 20 \text{ vanadium oxide} \]

\[T/\mu = 5.15 \times 10^{-3} \]

\[T/\mu = 3.92 \times 10^{-2} \]
looks just like the experiments
Mottness looks just like the experiments
This is an optimistic syllabus. Material that may be omitted for lack of time is in blue.

I Relativistic Wave Equations

A The problem: Lorentz covariance
B The Klein-Gordon equation
C Dirac’s equation
 1 Derivation, Dirac matrices (chiral and Bjorken and Drell)
 2 Massless case: Weyl’s equation
 3 Operators, angular momentum and spin
 4 Hamiltonian form and equations of motion
 5 Bispinor notation
D Non-relativistic reduction of the Dirac equation and the g factor of the electron.
E Lorentz covariance of Dirac’s equation
 1 Meaning, example of KG equation
 2 Solution and interpretation
 3 Bilinear covariants.
 4 Generalizations
F Single particle solutions of the Dirac equation
 1 Counting states, projection operators
 2 Momentum eigenstates and their high energy limit.
G More applications of the Dirac equation if time permits.

II Approximation Methods

A Stationary state perturbation theory
toy model: merging of UV and IR fixed points

\[\beta = (\alpha - \alpha_*) - (g - g_*)^2 \]

\[g_\pm = g_* \pm \sqrt{\alpha - \alpha_*} \]
toy model: merging of UV and IR fixed points

\[\beta = (\alpha - \alpha_\ast) - (g - g_\ast)^2 \]

\[g_{\pm} = g_\ast \pm \sqrt{\alpha - \alpha_\ast} \]

\[g_{\text{IR}} \equiv g_- \]

\[g_{\text{UV}} \equiv g_+ \]

\[\alpha > \alpha_\ast \]
toy model: merging of UV and IR fixed points

\[\beta = (\alpha - \alpha_*) - (g - g_*)^2 \]

\[g_\pm = g_* \pm \sqrt{\alpha - \alpha_*} \]
toy model: merging of UV and IR fixed points

\[\beta = (\alpha - \alpha^*) - (g - g^*)^2 \]

\[g_{\pm} = g^* \pm \sqrt{\alpha - \alpha^*} \]

\[\beta \]

\[g_{\text{IR}} \equiv g_- \quad \text{and} \quad g_{\text{UV}} \equiv g_+ \]

\[\alpha > \alpha^* \]

\[\alpha = \alpha^* \]

\[\alpha < \alpha^* \]

\[\Lambda_{\text{IR}} = \Lambda_{\text{UV}} e^{-\pi/\sqrt{\alpha^* - \alpha}} \]
toy model: merging of UV and IR fixed points

\[\beta = (\alpha - \alpha_*) - (g - g_*)^2 \]

\[g_\pm = g_* \pm \sqrt{\alpha - \alpha_*} \]

\[\beta \]

\[g_{\text{IR}} \equiv g_- \]
\[g_{\text{UV}} \equiv g_+ \]

\[g_\pm \text{ are complex} \]
\(\text{(conformality lost)} \)

\[\Lambda_{\text{IR}} = \Lambda_{\text{UV}} e^{-\pi/\sqrt{\alpha_* - \alpha}} \]

BKT transition

Kaplan, arxiv:0905.475