Noether’s Second Theorem and Strange Metals

Thanks to: NSF

Gabriele La Nave

Rev. Mod. Phys. 2019
(arXiv:1904.01023)
CIMP 2019
T-linear resistivity

\(\rho > \rho_Q \)

\(l < a \)

\(l > a \)

\(\rho > \rho_Q \)

Violates MIR limit

electrons not charge carriers

?
Is a new gauge principle operative?
Does anything local carry the charge?

- No
 - e is scale dependent
 - $\int_{\ell} eA \notin h\mathbb{Z}$

- Yes
 - $\int_{\ell} eA = h\mathbb{Z}$
Can you mess with A?
Noether’s First Theorem

\[U(1) \quad \leftrightarrow \quad qA \rightarrow qA - q\partial_\mu \Lambda \]

\[\psi' = e^{iqA} \psi \]

\[[q\Lambda] = 0 \]
\[[qA] = 1 \]
\[[A] = 1 \]

\[S = \int d^d x (J_\mu A^\mu + \cdots) \]

\[\partial_\mu J^\mu = 0 \]

\[[d^d x JA] = 0 \]

\[[J] = d - 1 \]

fixes dimension of current

current conservation

Noether’s Thm. I
Are there exceptions?
Pippard’s problem

\[J_s \neq \frac{-c}{4\pi \lambda^2} A \]

failure of local London relations
\[J_s = -\frac{3}{4\pi c \xi_0 \lambda} \int \frac{(\vec{r} - \vec{r}'')((\vec{r} - \vec{r}') \cdot \vec{A}(\vec{r}'')) e^{-(\vec{r} - \vec{r}'')/\xi(\ell)}}{(\vec{r} - \vec{r}'')^4} d^3 \vec{r}'' \]
Units of Current

\[J_{\mu}(x) = \frac{\delta L_m}{\delta A_\mu} = - \int C^{\mu\nu}(x, x')(A_\nu(x') - \partial_\nu \phi(x')) d^3 x' \]

\[[J] = d - d_C - d_A\]

anomalous dimension

Standard Result

\[\delta(x_0 - y_0)[J_{\mu}(x), \phi(y)] = \delta^d(x - y)\delta\phi(y) \]

\[[J] = d - 1\]
Are there other examples of currents with anomalous dimensions?

underlying electricity and magnetism?

is symmetry breaking necessary?
Mott insulator

- temperature
- parent
- under doped
- optimally doped
- over doped
- doping

- “strange” metal
- no order
- conventional metal?
why is the problem hard?
single-parameter scaling

$$\xi \downarrow \xi_T \propto \xi^z$$

$$\frac{\delta^2 \ln Z}{\omega \delta A_\mu \delta A_\mu}$$

$$\sigma(\omega, T) \propto \omega$$

$$C_v \propto T^{d/z}$$

anomalous dimension $2 \rightarrow 1$
strange metal explained!

Hall Angle
\[\cot \theta_H \equiv \frac{\sigma_{xx}}{\sigma_{xy}} \approx T^2 \]

Hall Lorenz ratio
\[L_{xy} = \frac{\kappa_{xy}}{T \sigma_{xy}} \neq \# \propto T \]

all explained if
\[[J_\mu] = d - \theta + \Phi + z - 1 \]
\[[A_\mu] = 1 - \Phi \]
\[\Phi = -\frac{2}{3} \]

Hartnoll/Karch
\[[J_\mu] = d - \theta + \Phi + z - 1 \]

\[[A_\mu] = 1 - \Phi \]
\[\Phi = -2/3 \]

\[[E] = 1 + z - \Phi \]
\[[B] = 2 - \Phi \]

\textbf{note:} \[\pi r^2 B \neq \text{flux} \]

\[\oint A \cdot dl \notin h\mathbb{Z} \]

?
How is this possible - - if at all?
what is the new gauge principle?

\[[A_\mu] \neq 1 \]

\[A_\mu \rightarrow A_\mu + \partial_\mu \Phi \]
Noether’s Second Theorem: precursor

hint

\[\partial_\mu J_\mu = 0 \]
current conservation

what if

\[[\partial_\mu, \hat{Y}] = 0 \]

new current

\[[\tilde{J}] = d - 1 - D_Y \]

gauge symmetry

\[\partial_\mu \hat{Y} J_\mu = \partial_\mu \tilde{J}_\mu = 0 \]
possible gauge transformations

\[S = \frac{1}{4} \int d^d x F^2 \]

\[S = \frac{1}{2} \int \frac{d^d k}{2\pi^d} A_\mu(k) [k^2 \eta^{\mu\nu} - k^\mu k^\nu] A_\nu(k) \]

\[M_{\mu\nu} k^\nu = 0 \]

zero eigenvector

\[ik_\mu \rightarrow \partial_\nu \]

\[A_\mu \rightarrow A_\mu + \partial_\mu \Lambda \]
family of zero eigenvalues

\[M_{\mu\nu} f k^\nu = 0 \]

generator of gauge symmetry

1.) rotational invariance
2.) A is still a 1-form
3.) \([f, k_\mu] = 0\)
only choice

\[f \equiv f(k^2) \]

\[(-\Delta)^\gamma \]

\[A_\mu \rightarrow A_\mu + (-\Delta)^{\frac{\gamma - 1}{2}} \partial_\mu \Lambda \]

\[[A_\mu] = \gamma \]

what kind of E&M has such gauge transformations?
claim: extra dimension

\[S = \int dV_d dy \left(y^a F^2 + \cdots \right) \]

\[\text{eom} \quad d(y^a \star dA) = 0 \]

\([A] \neq 1\]

Karch:1405.2926

Gouteraux: 1308.2084
if holography is RG then how can it lead to an anomalous dimension?
construct `boundary’ theory explicitly
\[S = \int dV d\gamma (y^\alpha F^2 + \cdots) \]

\[d(y^\alpha \star dA) = 0 \]
Caffarelli-Silvestre extension theorem (2006)

\[g(x, y = 0) = f(x) \]
\[\Delta_x g + \frac{a}{y} g_y + g_{yy} = 0 \]
\[\nabla \cdot (y^a \nabla g(x, y)) = 0 \]

\[\lim_{y \to 0} y^a \partial_y g \]

\[C_{d, \gamma}(-\Delta)^\gamma f \]

\[g(z = 0, x) = f(x) \]
\[\gamma = \frac{1 - a}{2} \]
Closer look

\[\nabla \cdot (y^a \nabla u) = 0 \]
scalar field (use CS theorem)

\[d(y^a \star dA) = 0 \]
holography

Similar equations

generalize CS theorem to p-forms

GL, PP: 1708.00863
(CIMP, 366, 199 (2019)))
\[d(\ast \rho^a dA) = 0 \]

UV
conformal boundary
\[r \to \infty \]

\[\rho = r - r_h \]
horizon
IR

\[d(\ast y^a dA) = 0 \]

\[A \to A + d\gamma \Lambda \equiv A' \]
\[d\gamma \equiv \Box^{\frac{\gamma-1}{2}} d \]
boundary action: fractional Maxwell equations

\[\Box^\gamma A_\perp = J \]

boundary action has `anomalous dimension' (non-locality)

\[F \rightarrow d_\gamma A = \partial_\mu \Box^{(\gamma^{-1})/2} A_\nu - \partial_\nu \Box^{(\gamma^{-1})/2} A_\mu \]
if holography is RG then how can it lead to an anomalous dimension?

\[S = \int dV_d dy \left(y^\alpha F^2 + \cdots \right) \]

\[[A] = 1 - \alpha/2 \]

dimension of A is fixed by the bulk theory: not really anomalous dimension
$[\partial_\mu, \hat{Y}] = 0$

$[d, \Box \gamma] = 0$

$J \rightarrow \Box \gamma J \quad [J] = d - 1 - \gamma$
Ward identities

\[C^{ij}(k) \propto (k^2)^\gamma \left(\eta^{ij} - \frac{k^i k^j}{k^2} \right). \]

standard Ward identity

\[k_i C^{ij}(k) = 0 \quad \Rightarrow \quad \partial_i C^{ij}(k) = 0 \]

but

\[k^{\gamma-1} k_\mu C^{\mu\nu} = 0 \quad \Rightarrow \quad \partial_\mu (-\Delta)^{\gamma-1/2} C^{\mu\nu} = 0 \]

inherent ambiguity in E&M
family of zero eigenvalues

\[M_{\mu\nu} f k^\nu = 0 \]

most fundamental conservation law

\[\partial^\mu (-\nabla^2)^{(\gamma-1)/2} J_\mu = 0 \]
Noether’s Second Theorem

\[
\sum_{\mu} \delta u_{\mu} = \delta f - \frac{d}{dx} \left\{ \sum \left(\begin{array}{c} 1 \\ \alpha \\
(1) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha} + \left(\begin{array}{c} 2 \\ \alpha \\
(2) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha}^{(2)} + \cdots + \left(\begin{array}{c} \kappa \\ \alpha \\
(\kappa) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha}^{(\kappa-1)} \right\} + \\
+ \frac{d^2}{dx^2} \left\{ \sum \left(\begin{array}{c} 2 \\ \alpha \\
(2) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha} + \left(\begin{array}{c} 3 \\ \alpha \\
(3) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha}^{(3)} + \cdots + \left(\begin{array}{c} \kappa \\ \alpha \\
(\kappa) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha}^{(\kappa-2)} \right\} + \\
\vdots \\
+ (-1)^{\kappa} \frac{d^\kappa}{dx^\kappa} \left\{ \sum \left(\begin{array}{c} \kappa \\ \alpha \\
(\kappa) \\
\end{array} \right) \frac{\partial f}{\partial u_{\alpha}} \delta u_{\alpha} \right\}
\]

\(A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda + \partial_{\mu} \partial_{\nu} G^{\nu} + \cdots \),

\(A \rightarrow A + d_{\gamma} \Lambda \equiv A' \)

\(d_{\gamma} \equiv (-\Delta)^{\frac{\gamma-1}{2}} d \)
Noether’s Second Theorem and Ward Identities for Gauge Symmetries

Steven G. Averya, Burkhard U. W. Schwabb

For simplicity, we focus on the case when the transformation may be written in the form6

\[
\delta_\lambda \phi = f(\phi) \lambda + f^\mu(\phi) \partial_\mu \lambda, \tag{10}
\]

but it is straightforward to consider transformations, as Noether did, involving arbitrarily high derivatives of \(\lambda\). (Although, the authors know of no physically interesting examples.) Let us start with

arxiv:1510.07038
experiments?
The magnetic flux \(\vec{B} \) should be dimensionless.

\[\pi r^2 B \]

What's the resolution?

\[[B] = 2 - \Phi = 2 + 2/3 \neq 2 \]
correct dimensionless quantity

\[a_i \equiv [\partial_i, I_i^\alpha A_i] = \partial_i I_i^\alpha A_i \]

\[\Delta^{-\alpha} \]

what's the relationship?

\[\oint \partial\Sigma a = \oint \partial\Sigma A \]

Norm \[
\oint \partial\Sigma a = \frac{1}{\Gamma(3/2 - \gamma)} \oint \partial\Sigma A
\]

not an integer
obstruction theorem to charge quantization (NST)

\[A_\mu \rightarrow A_\mu + \partial_\mu \Lambda + \partial_\mu \partial_\nu G^\nu + \cdots , \]

\[A \rightarrow A + d_\gamma \Lambda \equiv A' \]

\[d_\gamma \equiv (-\Delta)^{\gamma-1} \frac{1}{2} d \]

charge ill-defined (new landscape problem)
\[\Delta \phi_D = \frac{e}{\hbar} \pi r^2 B R^{2\alpha - 2} \left(\frac{\sqrt{\pi} 2^{1-\alpha} \Gamma(2 - \alpha) \Gamma(1 - \frac{\alpha}{2})}{\Gamma(\alpha) \Gamma\left(\frac{3}{2} - \frac{\alpha}{2} \right)} \sin^2 \frac{\pi \alpha}{2} _2F_1(1 - \alpha, 2 - \alpha; 2; \frac{r^2}{R^2}) \right) \]
is the correction large?

\[\alpha = 1 + \frac{2}{3} = \frac{5}{3} \]

\[\Delta \Phi_R = \frac{eB\ell^2}{\hbar} L^{-5/3} / (0.43)^2 \]

yes!
if in the strange metal

\[[A_\mu] = d_A \neq 1 \]

God said…

\[\Box^{d-1} \left(\nabla \times \vec{B} - \frac{1}{v^2} \frac{\partial \vec{E}}{\partial t} \right) = \mu \vec{j} \]
\[\Box^{d-1} \nabla \cdot \vec{E} = \frac{\rho}{\epsilon} \]
\[\Box^{d-1} \left(\nabla \times \vec{E} + \frac{\partial \vec{B}}{\partial t} \right) = 0 \]
\[\Box^{d-1} \nabla \cdot \vec{B} = 0. \]

fractional E&M

\[J^\mu(x) = - \int d^d x' C_{\mu\nu}(|x - x'|) A^\nu \]

\[[J] \neq d - 1 \]
\[[A] \neq 1 \]

in SC!

\[\omega = ck \]

\[U(1) \neq \mathbb{Z}_2 \]