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Abstract 

 

Molecular motors, such as kinesin, myosin, or dynein, convert chemical energy into 

mechanical energy by hydrolyzing ATP. The mechanical energy is used for moving in discrete 

steps along the cytoskeleton and carrying a molecular load (1). High resolution single molecule 

recordings of motor steps appear as a stochastic sequence of dwells, resembling a staircase (2-4). 

Staircase data can also be obtained from other molecular machines such as F1-ATPase (5, 6), 

RNA polymerase (7), or topoisomerase (8). We developed a maximum likelihood algorithm that 

estimates the rate constants between different conformational states of the protein, including 

motor steps. We model the motor with a periodic Markov model that reflects the repetitive 

chemistry of the motor step. The kinetics are estimated from the idealized dwell sequence (9) by 

numerical maximization of the likelihood function for discrete-time Markov models. This 

approach eliminates the need for missed event correction. The algorithm can fit kinetic models of 

arbitrary complexity, such as uniform or alternating step chemistry, reversible or irreversible 

kinetics, ATP concentration and mechanical force-dependent rates, etc. The method allows 

global fitting across stationary and nonstationary experimental conditions, and user-defined a 

priori constraints on rate constants. The algorithm was tested with simulated data, and 

implemented in the free QuB software (10). 

 

Introduction 

 

Processive motor proteins, such as kinesin, myosin, or dynein, convert chemical energy 

into mechanical energy by hydrolyzing ATP. The mechanical energy is used for moving in 

discrete steps along the cytoskeleton and carrying a molecular load (1). The mechano-chemistry 

of molecular motors is a repetitive chain of identical reaction units (11). Each unit corresponds to 

all the conformations – including ATP binding states – taken by the protein at each position. The 

reaction units in the chain are connected by motor step transitions, corresponding to forward or 

backward steps taken by the motor along its track. Myosin V, for example, is a dimeric motor 

protein walking with a hand-over-hand mechanism along actin filaments, taking a 37 nm step per 

ATP hydrolyzed. In the hand-over-hand motion, the motor alternately moves its heads to walk: 

first, the rear head moves 74 nm and becomes the leading head; next, the other head moves 74 

nm and takes the lead position, and so on (12, 2) (Fig 1A). 

The motor movement can be visualized by attaching a fluorescent probe to the molecule. 

Single molecule recordings of motor steps appear as a stochastic sequence of dwells (2-4) 

resembling a staircase (Fig. 1C). Each dwell corresponds to a defined position of a single motor. 

The duration of each dwell is random, with an exponential distribution determined by the 

kinetics. Generally, two consecutive dwells correspond to a step between two consecutive 

positions. However, due to the finite time resolution, the motor protein may take more than one 

step within the sampling interval, resulting in “missed events”. We developed a maximum 

likelihood “idealization” algorithm to provide the dwell sequence for kinetic analysis (9). This 

procedure finds the motor’s most likely position for each data point (implicitly detecting jump 

points), and estimates the step size distribution and transition probabilities. The idealization was 

tested successfully with different types of staircase data: uniform or alternating small and large 

steps, constant or variable step size, and reversible or irreversible kinetics. 

Staircase data can be obtained from other molecular machines at the single molecule 

level. A typical example is the F1-ATPase, which is a rotary molecular motor (Fig. 1B). 
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Unidirectional rotation of the central γ subunit is powered by ATP hydrolysis at three catalytic 

sites arranged 120° apart. At high resolution, each 120° step can be resolved into an 80° substep, 

driven by ATP binding, and another 40° substep (5, 6). Tracking the RNA polymerase position 

on the DNA template (7), or tracking the topoisomerase activity (8) also generates staircase data. 

What all these experiments have in common is the observation of a process with periodic 

chemistry through an increasing stochastic variable (i.e., position or rotational angle). In contrast, 

other single molecule data, such as the patch clamp recording of the current flowing through a 

single ion channel (13), observe a non-periodic stochastic variable with only a few states. 

Stochastic data cannot be analyzed by fitting the mean. Instead, one must fit probability 

distributions, or maximize the likelihood. The simplest way to analyze dwell sequences is to 

construct a dwell time histogram (14) and fit it with a sum of exponentials, or directly with the 

probability density function (pdf). However, there are a few critical disadvantages to histogram 

fitting. Most importantly, the information provided by the correlation between dwell times is not 

utilized. For a model with NS states, at equilibrium, a maximum number of 2NS - 1 parameters 

can be extracted by histogram fitting: the time constant and the weight for each exponential 

component, minus one for the constraint that weights sum to one.  

For example, the model shown in Fig. 2A has four rate constants but, since NS = 2, only 

three parameters can be uniquely identified by histogram fitting. Thus, while the time constants 

of the underlying process can be estimated by histogram fitting, a detailed kinetic mechanism 

may be impossible to derive due to missing information. Furthermore, histogram fitting does not 

account for missed events, and requires a large amount of data to avoid counting errors. This can 

be a problem for single molecule fluorescence experiments, where photobleaching is limiting. 

Some of these problems are solved by maximizing the likelihood function. The maximum 

likelihood method utilizes all the information contained in the data and its estimates are 

asymptotically unbiased (15).  

We present a maximum likelihood algorithm (“MIP”, for Maximum Idealized Point 

likelihood) that estimates the rate constants of conformation and step transitions, from dwell time 

sequences. We model the molecular motor with an aggregated periodic Markov model. Each 

molecular conformation is assigned to a state in the model, and transitions between states are 

quantified by rate constants. The states of the Markov model must include not only the finite set 

of allosteric conformations, but also the position along the substrate, which may be large. 

However, we take advantage of the periodic chemistry, and reduce the Markov model to those 

core states and transitions that fully describe the kinetic mechanism. To reflect periodicity, 

certain constraints are imposed on these core transitions. In the calculation of the likelihood 

function, this reduced model is, in effect, recycled at each data point. Although computation with 

the truncated model is only asymptotically exact, the precision can be improved by increasing 

the size of the core model. For small data sets, optimization with the full model is possible (16), 

but it becomes too slow and numerically unstable for larger data sets that may require hundreds 

of states. 

Stochastic single molecule data can be represented either with discrete-time or with 

continuous-time Markov models. A discrete-time algorithm maximizes the likelihood of a 

sequence of data points (17, 18), while a continuous-time algorithm maximizes the likelihood of 

a sequence of intervals (19, 20). Both algorithm types fully utilize the information contained in 

the data, and should give statistically equal estimates. For convenience, the likelihood function to 

be maximized by our MIP program is formulated for a discrete-time Markov model, with the 

added benefit that a correction for missed events (21) is no longer necessary.  
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The algorithm described here has advanced features (as described in (22)), such as global 

fitting across experimental conditions of arbitrary time course, linear constraints on rate 

constants (in addition to those reflecting the periodic step chemistry), etc. The algorithm can 

handle models with arbitrary kinetic complexity, including external driving forces, such as 

concentration, force, voltage, etc. The likelihood function and its derivatives are calculated 

analytically, permitting robust and fast (seconds to minutes) maximization. We tested the 

algorithm with a variety of kinetic models and simulated staircase data. Optimization with MIP 

was similar to the output from other maximum likelihood algorithms designed to estimate the 

rate constants of non-periodic Markov models (20, 18).    

 

 

[Insert Fig. 1 about here] 

 

 

Model and algorithms 

 

Markov model 

The behavior of a single molecule is well described with Markov models. At any position 

p along the substrate, the motor molecule is assumed to exist in one of NS “aggregated” (i.e., 

experimentally undistinguishable) states. Thus, a staircase data set where the motor randomly 

walks across NP positions requires a model with NS × NP states. Note that, due to missed events 

and reversible chemistry, the number of observed dwells may be different than NP. In general, 

the rate constants of a Markov model are expressed as a rate matrix Q (23). For staircase data, 

the resulting rate matrix Q has a dimension (NS × NP) × (NS × NP). The Q matrix has each off-

diagonal element qij equal to the rate constant between states i→j, and each diagonal element qii 

equal to the negative sum of the off-diagonal elements of row i, so that the sum of each row is 

zero (this reflects the fact that the probability of being somewhere is unity). Hence, -1/qij is equal 

to the mean lifetime of state i. Each rate constant qij has the following Eyring expression (24): 

 

ijij Fk

ijijij eCkq
×

××=
1

0
    (1) 

 

where kij
0
 is a pre-exponential factor, Cij is the concentration of some ligand (such as ATP), and 

kij
1
 is an exponential factor (Arrhenius), multiplied by the magnitude of the driving force Fij (e.g., 

mechanical force). If the rate is not concentration dependent, then by definition Cij = 1. Note that 

including Cij in Eq. 1 relies on the assumption that Cij is constant, in which case the kinetics are 

(pseudo-) first order. The units of the exponential factor kij
1
 depend of the units of the driving 

force Fij.  

The occupancy of the NS × NP states is represented with a state probability vector P, of 

dimension (NS × NP). The Kolmogorov equation describes the dynamics of P: 

 

QP
P

⋅=
∂

∂ T

t

T

t

t
     (2) 
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where Pt is the state probability vector at time t, and the superscript 
T
 denotes vector 

transposition. The Chapman-Kolmogorov solution allows calculation of Pt, given some initial 

value P0: 

 
tTT

t e ⋅⋅= QPP 0      (3) 

 

In the same way, the solution of Pt can be advanced over the sampling interval dt:  

 

APP ⋅=+

T

t

T

dtt     (4) 

 

where A is the transition probability matrix, of dimension (NS × NP) × (NS × NP). Each element 

aij is equal to the conditional probability that the process is in state j at time t+dt, given that it 

was in state i at time t. The A matrix is: 

 
dt

e
⋅= QA      (5) 

 

By definition, the molecule cannot take more than one step at a time. Thus, the kinetic 

states at position p are directly connected only to the kinetic states at position p + 1 (forward 

step), and to the kinetic states at position p - 1 (backward step) (Fig. 2A). Therefore, Q is block-

tridiagonal (Fig. 2B). Due to the periodicity of the kinetic model, the Q and A matrices have the 

following additional properties: 

 

      
SS NjNiij qq ±±= ,     (6) 

   
SS NjNiij aa ±±= ,     (7) 

 

These two properties, together with the band-tridiagonal structure of the Q matrix, make the 

calculation of any qij element trivial. However, as further shown, the A matrix is also required to 

calculate the likelihood function in the discrete-time case. Even though the length of the reaction 

chain is practically limited by experimental conditions, the size of the corresponding Markov 

model could be very large, with possibly hundreds of states. How does one calculate the A 

matrix when Q is large? 

Within a sampling interval dt, the motor can maintain position or can take any number of 

steps, back and forth. However, if the position at time t is known, the position at t + dt is 

expected to be in the neighborhood, and the probability of finding the motor at a further away 

position decreases exponentially with the distance. If the sampling interval is short relative to the 

kinetics, the probability of the motor having undertaken more than a small number of steps 

approaches zero: aij → 0, for j sufficiently far from i. While Q is band-tridiagonal, A is 

periodically banded. The size of any band of A is equal to NS rows, and any two adjacent bands 

are identical but shifted horizontally by NS columns (Fig. 2C). For a full representation of A, it is 

therefore enough to calculate the elements aij within a band, such that j is within a certain 

distance from i, small enough to permit computation, yet large enough for precision. The other 

elements aij, where j is farther from i, can be approximated as zero. Any other band of A can be 

constructed simply by shifting left or right by a multiple of NS columns.  

A practical way of calculating the transition probabilities aij with minimal error is the 

following: first, a truncated rate matrix Q
r
 is constructed as if it were copied as a submatrix from 
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an infinite Q. The size of Q
r
 is (2r + 1) × (2r + 1) reaction units, where each unit has NS states. 

The “truncation order” r is chosen to be greater than the highest-order step detected in the 

staircase data. A truncated A
r
 matrix is subsequently obtained from Q

r
 using Eq. 5. We have 

chosen the spectral decomposition technique (26, 27), which obtains the A
r
 matrix as follows: 

 

 ∑ ⋅⋅=
i

t

i

r ie
λ

AA      (8) 

 

where Ai are the spectral matrices obtained from the eigenvectors of Q
r
, and λi are the 

eigenvalues of Q
r
. A submatrix copied from the theoretically infinite A should be approximately 

equal to the corresponding submatrix copied from A
r
, if r is sufficiently large. For the example 

shown in Fig. 2C, we found that the approximation error becomes negligible for r ≥ 3. Note that 

since the first and last rows of Q
r
 do not have zero sum, the A

r
 matrix is no longer row 

stochastic, i.e., the sum of each row is not one. In conclusion, all calculations can be done with a 

truncated model of small size. 

 

[Insert Fig. 2 about here] 

 

Dwell time probability density function 

 The probability density function for the lifetime of an aggregated Markov model in a 

given class is a sum of exponentials, with as many components as states in that class (28). To 

calculate the pdf, Q is partitioned into submatrices Qab of dimension (Na × Nb), where Na and Nb 

are the numbers of states in aggregation classes a and b, respectively. The pdf of the transitions 

between classes a and b is given by the matrix Gab(t), as follows: 

 

( ) ab

t

ab
aaet QG

Q ⋅= ⋅
       (9) 

 

where Qaa is the submatrix of Q that contains only transitions within class a, and Qab is the 

submatrix containing transitions between classes a and b. The matrix 
taae
⋅Q

 represents the 

probabilities of transition within class a. Gab(t)ij is the conditional pdf that the process stays for 

time t in class a, given that it entered class a through state i and that it exited into class b through 

state j. To calculate the unconditional pdf, one must take into account the probabilities of 

entering through each state of class a, and all possible exit classes b ≠ a. Thus, the pdf of 

dwelling for time t in class a, denoted fa(t), has the following expression (28, 29): 

 

( ) ( )∑
≠

⋅ ⋅⋅⋅=
ab

ab

tT

aa
aaetf 1QP

Q
     (10) 

 

where the vector Pa (of dimension Na) represents the entry probabilities in class a, and 1 is a 

vector of ones, of dimension matching Qab. With the assumption that the process is at 

equilibrium, Pa can be calculated as follows (28): 

 

     
∑

∑

≠

≠

⋅⋅

⋅

=

ab

ba

T

eqb

ab

ba

T

eqb
T

a
1QP

QP

P
,

,

    (11) 
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where Pb,eq is a vector of dimension Nb, containing the equilibrium probabilities for the states in 

class b. Essentially, the above expression calculates the entry probabilities into class a as the 

equilibrium probabilities in class b ≠ a multiplied by the rates between b→a. The role of the 

denominator is to normalize the resulting probabilities to one. For a simple two state model, Eq. 

10 reduces to ( ) tk

aba
abektf

⋅−×= . 

 

Likelihood function for the continuous-time model 

The one-dimensional pdf (Eqs. 9 and 10) can be used to calculate the joint pdf of a 

sequence of dwells (t, a) as follows (30) : 

 

( ) ( )∑
≠

⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅=

T

T

T
T

a
T

aaaaa

ab

ba

t

aa

t

aa

tT

a eeef 1QQQPat
QQQ

32

2
22

21

1
11

1
,    (12)  

 

where t is the dwell time sequence t = [t1, t2, …, tT], and a is the class sequence a = [a1, a2, …, 

aT]. f(t, a) is in fact the likelihood of observing the dwell sequence (t, a), given the model and its 

parameter values. 

 The likelihood function above is formulated for an ideal dwell sequence, in which all 

transitions between different classes are observed. In practice, due to finite temporal resolution, 

some short dwells will always be missed. These missed events may result in observed steps 

between non-consecutive positions. Notice that the submatrix for transitions between non-

consecutive positions is zero, which causes the likelihood to be zero too. Without a correction for 

missed events, dwell times are overestimated, and model parameters are biased. The distortion 

caused by missed events can be corrected by an exact but slow solution (31, 32), or by a fast 

approximation (33, 20). For example, in the first order correction (20), the pdf has exactly the 

same form, except it uses the matrices 
e
Qaa and 

e
Qab, corrected for missed events, as follows: 

 

( )
aaaa

t

aaaaaa

e daae QQIQQQ
Q ⋅⋅−⋅−=

−⋅ 1
     (13)  

( )[ ]
( )[ ]cbcc

t

acab

aaaa

t

aadab

e

dcc

daa

e

et

QQIQQ

QQIQQ
Q

Q

⋅⋅−⋅−⋅

⋅⋅−⋅⋅=
−⋅

−⋅

1

1
exp

   (14)  

 

where I is the identity matrix and td is the deadtime. a  refers to those states that are not in class 

a, and c refers to those states that are neither a nor b. 

In the case of processive molecular motors, there is generally only one aggregation class, 

and its dwell time pdf has NS exponentials. The Q matrix can be partitioned using three 

submatrices Q0, Q-1 and Q1, as shown in Fig. 2B. Thus, Q0 is the submatrix of transitions within 

the same reaction unit, while Q-1 and Q1 are the submatrices of transitions between consecutive 

units, in the forward or backward direction, respectively. The dwell time pdf has the following 

expression: 

 

( ) ( ) 1QQP
Q ⋅+⋅⋅= −

⋅
110

0 tT
etf     (15) 

 

where P0 is the vector of entry probabilities into one unit. P0 can be obtained as follows: 
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( )

( ) 1QQP

QQP
P

⋅+⋅

+⋅
=

−

−

11

11

0 T

eq

T

eqT
    (16) 

 

where Peq is the vector of equilibrium probabilities for the states in one reaction unit. The 

calculation of Peq deserves some discussion: the equilibrium probability for any state i along the 

chain should be very small, theoretically zero for an infinite chain. However, since the process is 

periodic, dwells are indistinguishable: dwells corresponding to different positions have identical 

pdf. Therefore, the equilibrium probability for a state i inside a reaction unit, taken separately, is 

obtained by summing the probability of that state across all reaction units, which is a finite 

number. Furthermore, the same value is obtained whether the sum is over an open and infinite 

chain, or over a circular and finite chain. Thus, a practical way to calculate Peq is by constructing 

a circular model that contains two reaction units connected in a loop. From the Q matrix of this 

circular model, equilibrium probabilities can be calculated with the method described in (23). 

From these, Peq,i is obtained as twice the equilibrium probability of state i in one unit of the 

circular model.  

The likelihood L of a staircase dwell sequence can be written as follows: 

 

( ) 1QQQQP
QQQ ⋅+⋅⋅⋅⋅⋅⋅⋅⋅= −

⋅⋅⋅
110

0

2

20

1

10 Tt

i

t

i

tT
eeeL     (17)  

 

where Qi is equal to either Q1 or Q-1, depending on whether the step between the two 

consecutive dwells is in the forward or in the backward direction. An example of how to 

calculate the likelihood function for a given dwell time sequence is shown in Fig. 2E. 

Application of the missed events correction to staircase data is possible, but for details we refer 

the reader to (19, 20). Note that, due to missed events correction, the submatrix for transitions 

between non-consecutive positions is no longer zero.  

 

Likelihood function for the discrete-time model 

For easier understanding and without loss of generality, we assume that the maximum 

step detected in the data is of order ±1, i.e., any two consecutive measurements are not separated 

by more than one position. To better illustrate the method, we also assume the kinetic model is 

reversible, with two states per reaction unit, such as shown in Fig. 2A. We choose a truncation 

order r = 1, and thus the model has 2r+1 = 3 units (referred to as “left”, “center” and “right”), 

and a total of six states. Hence, the Q
r
 and A

r
 matrices have a dimension of 3× 3 units, or 6×6 

elements. Similarly, the state probability vector P and all other vectors used in the computation 

have a dimension of 3 units. For increased numerical accuracy, A
r
 should be obtained from a 

larger Q
r
 before truncation. 

The likelihood L of a sequence [0…T] of idealized staircase data points is given in matrix 

form by the following expression: 

 

( ) ( ) ( ) ( ) 1SBASBASBASBP ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= T

rrrT
L L2100   (18) 

 

The likelihood expression above is similar to that in (18). P0 is the initial state probability vector. 

All its entries are zero, except those corresponding to the center unit, which are non-zero and 

sum to one. Bt is a diagonal matrix, with entries equal to either 0 or 1 (Fig. 2D). For data points 

at the beginning of dwells, following a forward jump, the entries in the left block are 1 and all 
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the others are zero. For points corresponding to a backward jump, the entries in the right block 

are 1 and all the others are zero. For all other points, the entries in the center block are 1 and all 

the others are zero. At each point t, the appropriate Bt matrix is plugged into the likelihood 

expression (Fig. 2E).  

In (18), Bt is also a diagonal matrix, but its diagonal entries are Gaussian conditional 

probability densities. There, these probability densities measure how likely it is that a noisy data 

point was obtained while the process was in a given state. Here, the probability densities are 

replaced with zero or one, since the signal is already separated from noise. Note that with data 

obtained from motors with high step variability (e.g., dynein), the step order may be ambiguous. 

In this case, Bt can be modified as to include all possible jump orders, each with a calculated 

weight. S is a permutation matrix (Fig. 2D) that sums, block-wise, the state probabilities, moves 

the sum into the center block and clears the left and right blocks. The role of the S matrix is to 

map the likelihood computation from the theoretically infinite state space into the finite, small 

state space of the truncated A
r
 matrix. This is permitted by the periodic chemistry and by the 

periodic properties of the A matrix (Eq. 7).  

In short, the likelihood function in Eq. 18 propagates the state probabilities through the 

time sequence, according to Eq. 4, but it also compares the theoretical prediction with the data. 

The calculation starts with the initial state probabilities P0, which represent the a priori 

knowledge about the initial state occupancies. Then, for each time t, Pt+1 is first predicted by 

post-multiplying Pt with the A
r
 matrix (as in Eq. 4). The prediction is then corrected by the 

evidence contained in the data, i.e., by post-multiplication with the diagonal matrix Bt+1. This 

correction leaves unmodified the entries in the state probability vector corresponding to those 

states that match the actual data, while it zeroes all the others. The corrected Pt+1 is the a 

posteriori estimate. The corrected state probabilities are then reset by post-multiplication with 

the permutation matrix S, so that only the states in the center block are occupied and the others 

are zero. Although the same result can be achieved without explicitly using the S matrix, this 

formulation permits a consistent matrix form of the likelihood function and of its derivatives, as 

shown below. Consequently, only the relative difference in position between two consecutive 

data points is used. Note that the S matrix is strictly necessary only at the beginning of dwells 

and has no effect otherwise. Finally, the a posteriori state probabilities at the last data point are 

summed over all states, by post-multiplication with a column vector of ones. This sum is equal to 

the likelihood. The more the prediction matches the actual data, the higher the likelihood. An 

example of how to calculate the likelihood for a point sequence is shown in Fig. 2E. 

 

Maximization of the likelihood function 

The objective is to find the parameter set θ
ML

 that maximizes the likelihood L, or, 

equivalently, the log-likelihood LL: 

 

     LLML

θ

θ maxarg=      (19) 

 

Either the continuous-time or the discrete-time likelihood function can be maximized. Here, we 

have chosen the discrete-time case, for two main reasons: it is a simpler computation, and it does 

not require correction for missed events. The likelihood function is maximized numerically. For 

details of implementation, we refer the interested reader to (22). The parameters to be estimated 

are the pre-exponential and the exponential factors kij
0
 and kij

1
, for each rate constant qij. A 

transformation of variable enforces the constraint of positive pre-exponential factors kij
0
 (22). 
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Other constraints are the model periodicity (Eq. 6), and those derived from a priori knowledge 

(22), such as fixed or scaled rates, or microscopic reversibility of cycles. We implemented an 

efficient mechanism for imposing these constraints using the singular value decomposition, as 

previously reported (18, 22). The algorithm optimizes a set x of free parameters, from which the 

kinetic parameters kij
0
 and kij

1
 are subsequently calculated. Each constraint reduces by one the 

number of free parameters.  

The likelihood is computed using recursive forward and backward vector variables α and 

β, initialized and calculated as follows (18): 

 

SBPα ⋅⋅= 000

TT
 

( )SBAαα ⋅⋅⋅= ++ 11 t

T

t

T

t  

1β =T  

( ) 11 ++ ⋅⋅⋅= ttt βSBAβ      (20-23) 

 

Numerical underflow is avoided by using the scaling factors st to calculate the normalized 

probabilities α
(

 and β
(

, as follows: 

 

     1α ⋅= 00s  

     ( ) 1SBAα ⋅⋅⋅⋅= ++ 11 t

T

tts
(

 

     000 s
TT

αα =
(

 

     ( ) 111 +++ ⋅⋅⋅= tt

T

t

T

t sSBAαα
((

 

     TT ββ =
(

 

     ( ) 111 +++ ⋅⋅⋅= tttt sβSBAβ
((

    (24-29) 

 

Note that 1=⋅ t

T

t βα
((

, since the same scaling factors were used for both αααα and ββββ. Hence, LL can 

be conveniently calculated using the scaling factors st, while its derivatives ∂LL/∂qij can be 

calculated using the chain rule of matrix differentiation, as follows: 

 

     ∑
=

=
T

t

tsLL
0

ln       (30) 

∑
−

=

++ 







⋅⋅⋅

∂

∂
⋅+⋅⋅⋅

∂

∂
=

∂

∂ 1

0

1100
0

T

t

tt

ij

T

t

ij

T

ij qqq

LL
βSB

A
αβSB

P (((
   (31) 

 

The derivatives ∂P0
T
/∂qij, ∂A/∂qij, ∂Q/∂qij, and the A matrix itself are calculated as in 

(22), with the mention that ∂Q/∂qij takes into account the periodic chemistry (Eq. 6). The 

derivative of LL with respect to a free parameter xk is calculated with the chain rule, as follows: 

 

∑


























∂

∂

∂

∂
+

∂

∂

∂

∂

∂

∂
=

∂

∂

ji k

ij

ij

ij

k

ij

ij

ij

ijk x

k

k

q

x

v

v

q

q

LL
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where 0ln ijij kv = , ijijij qvq =∂∂ , and ijijijij qFkq ×=∂∂ 1  are obtained as in (22). In the above 

calculation, A and Q are the truncated matrices. The indexes i and j are for the off-diagonal 

entries in the Q matrix corresponding to non-zero rates in the kinetic model. Note that the 

likelihood function can be maximized without its analytical derivatives, but their availability 

allows for a significantly faster and more precise maximization. The optimization routine we 

used calculates the covariance matrix of the free parameters x. From this, we calculate the error 

estimates of the rates (22). 

We accelerated the computation of the likelihood function and its derivatives by pre-

computing multiplications of identical terms in the likelihood function (Eq. 18). For example, a 

dwell of length 73 points can be represented in the likelihood calculation either as a product of 

73 identical terms, or more efficiently as a smaller product of powers, such as the following: 

 

    ( ) ( ) ( )LL SBASBASBA ⋅⋅⋅⋅⋅⋅⋅⋅=
864

L    (33) 

 

Note that the sum of the exponents 64 + 8 + 1 = 73. These exponents can be conveniently chosen 

as powers of two, e.g. 1, 2, 4, 8…, etc. Thus, one can first calculate the power with exponent 

one, which by multiplication with itself gives the power with exponent two, and so on. It is 

therefore enough to calculate the term SBA ⋅⋅ and then its 2
nd

, 4
th

, 8
th

… powers. Thus, K terms 

in the series ( )
k

2
SBA ⋅⋅  can be calculated in only K matrix multiplications, and only once for the 

whole data set. This treatment, applied to the likelihood function and its derivatives, results in a 

considerable speed improvement.   

 

Materials and methods 

 

All the computer work was done with the QuB program (10), running MS Windows XP 

on a 3.0 GHz Intel PC. Staircase and non-staircase noisy data and idealized dwell time sequences 

(subject to finite temporal resolution) were generated with the SIM routine. The simulator also 

provides the actual number of transitions for any pair of states, nij, and the actual time spent in 

each state, ti. From these values, the true rate constants are calculated as kij = nij / ti. Staircase 

data were generated with periodic Markov models, as utilized for processive molecular motors, 

while non-staircase data were generated with non-periodic Markov models, as utilized for ion 

channels. For estimation of rate constants, we used the MIP, MPL and MIL routines. MIP works 

by optimizing the discrete-time likelihood of either a staircase or a non-staircase dwell time 

sequence. MPL maximizes the discrete-time likelihood of a data sequence generated by a non-

periodic Markov model (18). MIL maximizes the continuous-time likelihood of a dwell time 

sequence, and provides first order correction of missed events (20). All three algorithms 

calculate analytically the gradients of the likelihood function, and maximize the likelihood 

function using the same fast variable metric optimizer (dfpmin), implemented as in (34) with 

modifications.  

 

Results 

 

Figure 3 shows a few examples of kinetic models that can be modeled by our algorithm. 

For each model, only motor steps can be observed (transitions between different units) but not 
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transitions between states inside the same reaction unit. All models implicitly include ATP 

binding and mechanical force-dependent steps. In Fig. 3, only model E is formulated with 

explicit ATP binding, in order to emphasize its special characteristic of having alternating steps 

with different chemistry. This model describes the two substeps of the F1-ATPase: an 80° ATP 

binding substep and a 40° substep (5, 6). Alternating steps are handled by our method, with the 

simple modification that the permutation matrix S is applied only after a repeating pair of two 

alternating units. An illustration of the need for constraints on rate constants is model C, which 

describes a molecular motor, such as myosin V (2), with the fluorescent probe attached to the 

motor head. In this case, only every other motor step can be observed. Consequently, there are 

twice as many states per reaction unit but, due to constraints, the number of free parameters 

remains the same as for model B. Notice how dwell time histograms are truncated, since dwells 

shorter than the sampling interval (as shown, dt = 500 ms) are missed.    

 

[Insert Fig. 3 about here] 

 

Solving models with one state per reaction unit (Fig. 3A) is trivial: the two rates can be 

calculated by hand simply by dividing the number of forward and backward jumps (including 

missed events) by the length of the data. Although trivial, single state models are informative 

about possible bias in the maximum likelihood estimates. We tested the algorithm with both 

reversible and irreversible data generated by single state models. The rates obtained by the 

maximum likelihood algorithm were equal (within numerical precision) to the rates obtained by 

hand calculation. These results validate the algorithm, and show that the estimates are unbiased. 

Next, we tested the algorithm with a non-trivial model with two states per reaction unit, 

as shown in Fig. 2A. First, data simulated with the two state model were fit with either the 

correct model, or with a single state model (Fig. 4A). The estimates obtained with the correct 

model are virtually identical to the true rates used by the simulator. Furthermore, the difference 

between the true and the estimated rates, however small, is well within the standard deviation of 

the estimates, as calculated by the optimizer. The two models have nearly identical pdfs (shown 

overlapped on the dwell time histogram), but their log-likelihoods are very different: -79561.27 

(two state model) versus -83254.93 (one state model). Clearly, the correct model is favored by 

the likelihood function. In contrast, the histogram fitting, which ignores correlations in time, is 

not capable of distinguishing the two models.  

Is the increase in likelihood for larger models spurious, simply the result of having more 

fitting parameters? The correct model has four parameters while the single state model has only 

two. To estimate the role of an increasing number of parameters on the increase in likelihood, we 

used the Akaike (AIC) (35) and the Bayesian (BIC) (36) information criteria, defined as follows: 

 

     ( )kLLAIC −−= 2      (34) 

     ( )NkLLBIC ln5.02 ××−−=    (35) 

 

where k is the number of free parameters and N is the number of data points. For our example, 

both AIC and BIC favor the correct model by a large margin. We also simulated data with the 

single state model and fit them with both models (Fig. 4B). In this case, the log-likelihoods are 

virtually identical, and likewise the pdf curves. This indicates that the larger model is overfitting. 

Also indicative of overfitting is the large standard deviation of the estimates.  
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[Insert Fig. 4 about here] 

 

Statistical distributions of kinetic estimates 

To determine the statistical properties of the estimates, we simulated staircase data with 

the two state model shown in Fig. 3A. We found that the estimates for all rates have Gaussian 

distributions (Fig. 5A). However, obtaining a meaningful rate estimate requires that sufficient 

information about that transition is contained in the data. For example, kB had a large variance 

and it was bimodal when only two data traces were globally fit (Fig. 5A, upper graphs). A large 

fraction of the estimates consisted of zero values (in the optimization, we constrained kB ≥ 1×10
-5

 

s
-1

), while the remaining fraction consisted of finite values, loosely centered on the true 

(simulated) value. The explanation is simple: in the simulated data file used for analysis, the 

following transitions were counted: Bi→Ai = 5,315, Ai→Bi = 98,532, Bi→Ai+1 = 131,627, 

Ai+1→Bi = 39,477. As the file had 1000 segments of 5000 points each, the Bi→Ai transition 

(quantified by kB) occurred about once per trace. While some traces had one or a few Bi→Ai 

transitions, others had none. This shortage of information explains the poor quality of kB 

estimates (Fig. 5A, upper graphs). In comparison, the distribution of the kB estimates improved 

considerably when 20 segments were globally fit (Fig. 5A, lower graphs). 

 We also observed a lack of cross-correlation between different pairs of estimates (Fig. 

5B), which implies that the parameters are rather orthogonal. All four rate constants were 

estimated without bias (Fig. 5C, left graph) if at least 10 traces were globally fit. The standard 

error of all estimates was less than 10% (Fig. 5C, right graph) if the analyzed data contained at 

least a few hundred events of each transition. We emphasize that the source of this variance is 

the stochastic nature of the dwell sequence, and not the optimization program. One should regard 

these results as a measure of how much the estimates obtained from experimental data may 

depart from the true parameters of the generating process, under conditions of limited data.  

 We also tested the algorithm with irreversible data, generated with the same model but 

with either kB = 0, or jB = 0 (see Fig. 3C). As before, we constrained the estimated rates to be ≥ 

1×10
-5

 s
-1

, to avoid numerical problems. The data were analyzed in groups of 20 segments, with 

the zero rate (kB or jB) as a free parameter, or constrained to 1×10
-5

. In both cases, we obtained 

statistically correct estimates (results not shown). Data simulated with jB = 0 contain direct 

evidence for a zero jB, i.e., they lack backward steps. Thus, the algorithm theoretically should 

have obtained all jB estimates equal to 1×10
-5

. In practice, the optimizer estimated jB as 2.01×10
-5

 

± 4.02×10
-5

 (max = 4.6×10
-4

), close to the expected value. In contrast, data simulated with kB = 0 

do not contain direct evidence for a zero kB. While ideally kB should also have been estimated as 

1×10
-5

, in practice jB was estimated as 2.2×10
-4

 ± 8.6×10
-4

  (max = 1×10
-2

), a fairly good 

approximation.  

 

[Insert Fig. 5 about here] 

 

Comparison between MIP and other kinetic algorithms 

The MIP algorithm may be applied to data generated by non-periodic Markov models, 

such as single channel data, with the removal of the S matrix from Eq. 18. We compared MIP 

against the MIL (20) and MPL (18) maximum likelihood algorithms used for single channel 

analysis. We simulated data with a three state “closed-open-closed” model. To test the effect of 

missed events, we intentionally chose two of the four rate constants to be comparable to the 

sampling time (2 s
-1

 and 5 s
-1

, versus a sampling time dt = 0.1 s). Figure 6A shows that the three 
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methods are equivalent, and their estimates are statistically equal. As expected, the cross-

correlation is almost perfect between MIP and MPL, as they are both point methods designed for 

discrete-time Markov models, as opposed to MIL, which is interval-based and designed for 

continuous-time Markov models.  

The experiment also showed that it is legitimate to replace the Gaussian densities in the 

likelihood function with hard probabilities of zero and one, when the data are already idealized. 

MIL estimates may have greater variance than MIP or MPL estimates, which suggests that MIP 

requires less data to achieve the same precision. More importantly, the experiment demonstrates 

that a discrete-time method implicitly handles missed events as well as, or better than, the 

continuous-time method which explicitly requires correction for missed events. MIL estimates 

may depend critically on the choice of the dead time parameter (20). For this experiment, we 

found the best value to be ≈ 1.6 times the sampling interval (Fig. 6B), but the dead time is a 

function of the model and data.  

The convergence time of the three programs (using a MIP pre-multiplication order of 16) 

scaled approximately as 1 (MIL): 1.6 (MIP): 8 (MPL). MIL is clearly the fastest, as it operates 

with dwells and not points (there are fewer dwells than points), but MIP is close. Thus, the 

potentially slower computation of point-based methods is no longer a problem. For example, 

fitting a two-state model to a data set with ~ one hundred dwells converged in seconds. Fitting a 

model with four states to a few thousands dwells takes minutes. All three programs converged in 

approximately the same number of iterations. 

  

[Insert Fig. 6 about here] 

 

Discussion 

 

Molecular motors are mechano-chemical systems that in vivo may depart from a simple 

(pseudo-) first order kinetics. However, under the right in vitro experimental setup their intrinsic 

kinetics can be studied using Markov models, which can include dependence on external stimuli, 

such as ATP used to convert chemical into mechanical energy, or the generation of mechanical 

motion and force (11). The parameters thus obtained can be incorporated into more 

comprehensive in vivo models. In this paper we showed that: i). the potentially very large but 

periodic Markov model can be reduced to a small, truncated version; ii). the likelihood function 

of the stochastic staircase dwell sequence can be formulated in a compact form, for chemistry of 

arbitrary complexity; iii). unbiased kinetic parameters can be estimated by numerical 

maximization of the likelihood function.  

 

Continuous-time versus discrete-time models 

The discrete-time likelihood function makes no assumption about what happens between 

sampling points, and therefore does not “miss” events. In contrast, in the continuous-time model, 

it is assumed that the process does not change class during a dwell. Since this is not actually the 

case, a correction for missed events is necessary (31-33, 20). MIP does not require correction for 

missed events and thus has the potential of being more accurate than interval-based algorithms 

that have to deal with missed events (19, 20). It does not mean, however, that a point method 

such as MIP will work at any temporal resolution. Thus, when the sampling is slow relative to 

the kinetics, the process will reach equilibrium between samples, and information about 



 15 

transitions will simply be lost. Neither MIP nor any other method can extract useful estimates in 

this case. 

 

The rate estimates are unbiased and Gaussian 

 The maximum likelihood rate estimates are intrinsically unbiased, but the confidence 

level depends on the amount of available data (Fig. 5). Thus, a rate cannot be properly estimated 

when the corresponding transition occurs rarely. In this case, the distribution of the estimate may 

appear biased, or bimodal (Fig. 5A, upper graphs). While this is generally not a problem with 

single channel data which usually contain a large number of events, it can be a serious factor 

with data limited by photobleaching or by short substrate filaments. We recommend testing 

algorithm performance using simulated data to explore the errors in particular cases. We 

emphasize that this variability is determined by the stochastic nature of single molecule data and 

not due to the algorithm. 

 

Parameter identifiability and model selection 

Although the likelihood function (Eq. 18) fully utilizes the information contained in the 

data, any modeling study must answer two important questions: for a given model, how many 

kinetic parameters can be uniquely identified? Second, can two models be distinguished, 

according to some objective criterion? Regarding the first question, it is known that the 

maximum number of parameters that can be estimated from equilibrium single channel data is 

2×NC×NO (30, 37), where NC and NO are the numbers of “closed” and “open” states, respectively. 

How do we define “closed” and “open” in the case of staircase data? In a sense, the molecular 

motor model has only one aggregation class; however, jump transitions can be observed. 

Therefore, a minimal representation of the periodic model presented in Fig. 2A can be 

formulated with four state transitions (denoted by kF, kB, jF and jB) connecting three states (e.g., 

Ai, Bi and Ai+1) that can be partitioned in two “conductance” classes: states Ai and Bi are “closed”, 

and Ai+1 is “open”. From such a model, a maximum of four kinetic parameters should be 

uniquely identifiable. Our analysis (see Figs. 4 and 5) confirmed this prediction: all four rate 

constants were uniquely identified.  

In practice, the maximum number of parameters that can be determined is a function of 

the kinetic model, the experimental protocol (stationary versus non-stationary, local versus 

global fitting, etc), and the availability of an adequate amount of data (see Fig. 5). If more 

complex models are to be studied, the parameter identifiability may be improved by 

manipulation of experimental conditions, e.g., global fitting across different ATP concentrations 

or mechanical force values (22). The algorithm presented here was implemented with this need 

in mind, and can globally model data obtained under different experimental protocols, including 

nonstationary stimuli (22). 

With respect to model identifiability, it is known that two Markov models that are related 

by a similarity transform give identical likelihood (38, 39) and thus cannot be distinguished. In 

this case, global fitting across different conditions or using non-stationary stimuli will improve 

identifiability. Furthermore, due to the stochastic nature of the data, the likelihood estimator has 

an intrinsic variance proportional to the number of data points. When there are a small number of 

data points, the likelihood distributions for two different models may overlap. In the example 

shown in Fig. 4, the two models were correctly selected because we used a relatively large 

amount of data. Again, we recommend using simulations to check the statistical separation 

between likelihood distributions. Note that when models of different size are compared, their 
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likelihoods must be scaled for the number of free parameters and for the amount of data, as 

shown in Results. 

 

Reversible models and truncated matrices do not pose numerical problems  

Two kinds of numerical errors may in principle affect the kinetics algorithm. First, 

irreversible models may easily result in confluent (i.e., degenerate) Q matrix eigenvalues. In this 

case, the transition matrix A cannot be calculated using the convenient spectral decomposition 

(26, 27). A simple yet effective solution is to set a lower limit on rates, for example constraining 

the rates to >1/data length. Although this could potentially introduce bias in estimates, we found 

this bias to be negligible in practice.  

The second source of numerical error is computing the truncated transition probability 

matrix A
r
. The error between the truncated and the theoretical A matrices decreases with the 

truncation order. However, since the computational speed scales quadratically with the size of 

the model, the truncation order is chosen as a compromise between accuracy and speed. We 

found that a model with 2r+1 = 7…9 units runs reasonably fast (seconds to minutes) and has an 

error that is negligible relative to the intrinsic variance of the estimates. Note that when the 

analyzed data lack backward steps (i.e., they are irreversible), the model can be simplified to 

only r+1 units, since the “left” block states will never be occupied in the likelihood chain.  
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Figure legends 

 

Figure 1. Myosin V and F1-ATPase are typical molecular motors that convert chemical energy 

into mechanical energy by hydrolyzing ATP. A. Myosin V is a dimeric motor protein, walking 

with a hand-over-hand mechanism along the actin filament, with the stalk taking 37 nm steps per 

ATP hydrolyzed (2). B. F1-ATPase is a rotary motor that unidirectionally turns a rotor (γ subunit) 

inside a stator (α3β3 complex). The rotor turns in 120° steps, one for each ATP hydrolyzed. Each 

120° step consists in an 80° ATP driven substep, followed by a 40° substep (5, 6). C. By 

attaching a probe to the motor protein, staircase data are constructed from single molecule 

measurements. For a linear motor (myosin V), each dwell in the staircase data represents the 

location of the protein at a given position along its tracks, whereas for a rotary motor (F1-

ATPase), each dwell corresponds to a given number of revolutions taken by the rotor. The 

duration of each dwell is random, with exponential distribution determined by kinetics and by 

experimental conditions, such as ATP concentration or applied mechanical force. Due to finite 

sampling time, more than one step may occur within the sampling interval, resulting in missed 

events. At each position, the motor undergoes transitions between two or more conformations. 

One of these transitions is ATP binding. 

 

Figure 2. Molecular motors can be represented with reduced Markov models. A. The mechano-

chemistry of molecular motors is a repetitive chain of identical reaction units. Each unit includes 

the conformations assumed by the protein while located at a given position along the 

cytoskeleton. The example shown is for a model with two states per reaction unit. Only 

transitions between states within different units can be detected experimentally. B. The rate 

matrix Q of the Markov model is block tridiagonal and periodic. Shown is a submatrix Q
r
 

“copied” from the theoretically infinite Q, and its block representation. Note that the first and 

last rows are not zero-sum. C. A truncated transition probability matrix A
r
 is calculated as 

dtr r

e
⋅= Q

A . The example is shown for a sampling interval dt = 0.5 s. Note that A
r

 is also 

periodic. D. Auxiliary matrices (Bi and S) used in the calculation of the discrete-time likelihood 

function. E. An example of likelihood calculation, for either the continuous-time or the discrete-

time Markov model (see text for details).  

 

Figure 3. Molecular motor kinetics can be represented by a variety of models. Shown are a few 

examples of kinetic models and their simulated staircase data and dwell time histograms. These 

models have one state per reaction unit (A and E), or two states (B and C), and have reversible 

(A, B and D), or irreversible (C and E) kinetics. Even when not explicitly stated, all models 

include an ATP binding state, and mechanical force-dependent transitions. Model D corresponds 

to, e.g., myosin V experiments where the fluorescent probe is attached to the motor head, 

resulting in double steps of 74 nm. The apparent kinetics are slower, as a single dwell consists of 

two consecutive steps. Model E corresponds to F1-ATPase experiments, with an 80° ATP 

binding substep, followed by a 40° substep. Notice how the lifetime of those dwells following a 

40° substep becomes shorter at higher ATP concentration. Due to finite sampling, some unitary 

steps are missed (e.g., the double step in trace A, marked with a star). Missed events could in 

principle occur anywhere between two samples. Notice the effect of missed events on dwell time 

histograms.   
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Figure 4. Maximum likelihood can select the correct model. Staircase data were simulated with 

the two state model shown in A, or with the single state model shown in B, sampled at dt = 0.5 s. 

For each simulation model, the true rate constants are given, calculated as kij = nij / Ti, where nij 

is the actual number of transitions i→j, and Ti is the actual time spent in state i, as randomly 

chosen by the simulation routine. Each simulation was then maximum likelihood-fit with either 

model. The pdf curves for the ML estimates are shown overlapped on the dwell time histograms, 

without correction for missed events. In A, the log-likelihood LL is significantly greater for the 

correct model, even considering the additional two free parameters, while the pdf lines overlap 

almost perfectly. In B, the two models have virtually identical LL and pdf. Notice that estimates 

obtained with the correct model are very accurate. In B, estimates obtained with the wrong 

model have a very large SE. Notice how, due to missed events, the histogram appears to be 

slightly shifted to the right, relative to the ideal pdf curve.  

 

Figure 5. Statistical distribution of maximum likelihood kinetic estimates. Five thousand dwell 

sequences, each 5000 points long, sampled at dt = 0.5 s, were simulated with the model shown in 

Fig. 2A and were globally fit in groups of 2…1000. A. Rate constants are Gaussian distributed 

with a width proportional to the number of data points globally fit (two traces in A1, and 20 

traces in A2). The distribution of kB has much higher variance, and is bimodal when only two 

traces were fit (A1). This is explained by the scarcity of kB transitions: only ≈ one per segment, 

compared to more than ten per segment for all other rates. B. There is no apparent cross-

correlation between the estimates of different parameters. The example shown is for the global 

fit of 20 traces. The implication is that if one parameter cannot be reliably estimated (i.e., kB), it 

will not lower the precision of the other estimates. The solid circles mark the correct values. C. 

All four rate constants were estimated without bias, when at least 10 traces were globally fit, i.e., 

at least 10…100 transitions for each rate. The SE of all but kB estimates was below 10%, when at 

least 10 traces were globally fit. Considering the actual number of simulated transitions, all 

parameters are estimated with similar precision. 

 

Figure 6. Comparison between discrete-time and continuous-time maximum likelihood 

algorithms. One hundred data sets, each one second long, sampled at 10 Hz, were simulated with 

the non-periodic model “closed-open-closed” (k12 = 0.1 s
-1

, k21 = 0.05 s
-1

, k23 = 5.0 s
-1

, and k32 = 

2.0 s
-1

), and were maximum likelihood-fit individually. We tested the following algorithms: MIP 

(discrete-time, presented in this paper), MPL (discrete-time) (18), and MIL (continuous-time, 

first order missed events correction) (20). A. Cross-correlation plots show that estimates obtained 

with MIP (x axis) match almost perfectly the estimates obtained from the same data set with 

MPL (y axis), and are well correlated with the estimates obtained with MIL (y axis). Notice that 

MIL’s estimates have greater variance than those obtained with the other two algorithms. B. 

Estimates obtained with MIL may depend critically on the choice of dead time parameter for 

missed event correction. In the example shown, the best values were obtained with a dead time ≈ 

1.6×dt, where dt is the sampling interval. MIP and MPL do not require missed event correction. 

The dotted lines mark the true parameter values. 
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Figure 1.  
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Figure 2. 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6. 
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