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Supplement to: 
Improved hidden Markov models for molecular motors.  1. Basic theory 

 

Appendix.  Obtaining rate constants from the transition probabilities 

 Equation (1) provides a simple way to obtain the rate constants between the molecular states, 

based on the optimized parameters of the hidden Markov model.  This expression is only approximate, 

and ignores the problems of missed events and multiple steps occurring within the sample interval .  A 

more rigorous approach to derive the transition probability matrix from the matrix of rate constants has 

been suggested by Milescu et al. (20); here we present a similar solution for the inverse problem.   

Let the molecular state transition probabilities be given by the matrix A having elements 

  

giving the probability of a molecular transition from i to j during the interval (t, t +1], 

and the composite state transition probabilities be given by the matrix B having elements 

  

giving the probability of a molecular transition from the composite state (i,u) to (j,v) during the interval [t, 

t +1). The matrix B is related to the matrix of rate constants Q for the underlying chemical kinetics 

according to 

 . 

Meanwhile we obtain from optimizing the HMM the probability of a transition from the composite state 

 to ,  

 
,  

resulting in the step transition probability matrices C(w). The position change w of any molecular 

transition will be geometrically limited (w ! W), letting the Q matrix being banded with all entries equal 

zero for position changes v-u > W. Furthermore, the Q matrix is periodic with period n (the number of 

molecular states). Likewise, the transition probability matrix B is periodic with period n and banded, but 

with a larger band size. Within one sample interval, the motor can take any number of steps; however, the 



probability that the molecule takes s steps within one sample interval decreases exponentially with s. If 

the sample interval is small relative to the smallest dwell time, the number of steps s is practically limited 

(s ! S) and the transition probabilities approach zero for transitions involving position changes of size 

s·w > S·W.  

 A way to calculate the matrix of rate constants Q given B with minimal errors is to use truncated 

matrices as in Milescu et al. (20).  First, a truncated transition probability matrix Br  of size greater than 

 is constructed such that it contains the full band of B; to minimize errors, should 

have at least size  .  For example, can be built blockwise from the C(w) 

matrices of size . Second, the matrix logarithm of  is numerically solved (we use the logm 

function in Matlab). The resulting matrix   contains the full band of the Q matrix.  

Third, the complete Q matrix can be reconstructed from one band of the Qr matrix  which should be taken 

from the center of the matrix to avoid edge effects. By using this approach, the full matrix of rate 

constants Q can be calculated by truncated matrices of comparably small size. 

 Since the probability of s steps occurring within a certain time interval is correlated with the 

interval length, a good strategy to keep the bands of Q and A small is to shorten the sample interval. A 

reasonable value for would be 1/10 of the shortest mean dwell time, which limits the number of steps 

within effectively to . 



 

Figure S1 

A demonstration of  VS-HMM’s performance at various noise levels. We generated a number of 
recordings each similar to that discussed in Fig. 1D (64-20/10 nm steps, with mean dwells of 5 and 10 
data) but with the rms noise ! set to different values. For analysis of each trace, an initial HMM with 
broad c12 and c21 distributions was created and the algorithm allowed to converge on the most likely 
model parameters. In this figure we examine the three step sizes (A), frequencies of their occurrence (B), 
and the associated dwell times (C) as reported by the algorithm for input !  up to 20 nm. The results show 
that characteristics of the 64 and 20 nm steps are recovered unaltered, with < 20% excursions from their 
actual values, for  ! <14 nm. For larger noise levels, the dwell periods are affected first, followed by 
deviations in the number of times the HMM algorithm detects these stepping events. Interestingly, the 
mean step sizes of the two populations remain very close to their true values even when ! = 20 nm.  As 
expected, detection of the smallest steps in the simulations is most susceptible to noise. When the rms 
noise is about 12 nm, mean size of the 10 nm steps vary by ~20% but the estimated size of their dwell 
periods exceeds the original by ~50%.  As !  surpasses the 14 nm mark, the algorithm is no longer able to 
recover the 10 nm steps (panel B). 
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