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ABSTRACT Unbiased interpretation of noisy single molecular motor recordings remains a challenging task. To address this
issue, we have developed robust algorithms based on hidden Markov models (HMMs) of motor proteins. The basic algorithm,
called variable-stepsize HMM (VS-HMM), was introduced in the previous article. It improves on currently available Markov-
model based techniques by allowing for arbitrary distributions of step sizes, and shows excellent convergence properties for
the characterization of staircase motor timecourses in the presence of large measurement noise. In this article, we extend
the VS-HMM framework for better performance with experimental data. The extended algorithm, variable-stepsize inte-
grating-detector HMM (VSI-HMM) better models the data-acquisition process, and accounts for random baseline drifts. Further,
as an extension, maximum a posteriori estimation is provided. When used as a blind step detector, the VSI-HMM outperforms
conventional step detectors. The fidelity of the VSI-HMM is tested with simulations and is applied to in vitro myosin V data where
a small 10 nm population of steps is identified. It is also applied to an in vivo recording of melanosome motion, where strong
evidence is found for repeated, bidirectional steps smaller than 8 nm in size, implying that multiple motors simultaneously carry
the cargo.

INTRODUCTION

Tracking experiments on single molecular motors produce
staircase data that contain a wealth of information such as
the protein’s step size, translocation speed and direction,
rate ofATP turnover, and transitions between conformational
states. However, much of this information can be difficult to
extract owing to the poor signal/noise ratio (S/N) in these
nanometer-scale measurements. Several approaches have
been proposed in the past to interpret noisy motor protein
recordings. These approaches range from conventional step
detection using statistical tests (1) to a more sophisticated
hidden Markov model-based algorithm (2). Here we extend
the variable-stepsize hidden Markov model (VS-HMM)
approach described in our previous article (3) to better
account for the features of experimental data.

In experiments tracking molecular motors, each protein is
labeled with a tag, such as a fluorescent molecule or a latex
bead, whose position is monitored with a charge-coupled
device (CCD) camera or a photodetector. If measurements
are of sufficient time resolution then, the recording resem-
bles a staircase composed of long dwell periods when the
motor is bound to its substrate interrupted by instantaneous
jumps when, for example, the protein hydrolyses ATP and
undergoes conformational change. Because binding and

hydrolysis events are stochastic events, the jumps in the
protein’s position occur at random times. The position
reported by an electronic detector is updated at regular inter-
vals (frames) and typically represents the average position
of the tag during the frame interval.

We first wished to provide a better formal description of
the measurement errors in such integrating detectors; the
result is an extension to our previous algorithm, to yield
what is now called the variable-stepsize, integrating-
detector HMM (VSI-HMM). The incorporation of baseline
drifts into the model is another extension which is described
here. Finally, for determining dwell times in the presence of
very high noise levels, the incorporation of prior knowledge,
in the form of a prior probability function, is desirable. We
have incorporated this, to yield a maximum a posteriori
(MAP) estimation framework.

In this article, we describe these extensions to the hidden
Markov model algorithms and compare the performance of
the VSI-HMM with conventional step detection methods.
Finally, the method is applied to experimental data where
VS-HMM analysis uncovers small step sizes in myosin V
in vitro motility and provides evidence for tug-of-war when
multiple kinesins and dyneins operate simultaneously invivo.

THEORY

Review of the VS-HMM model

We first give a brief review of the notation of the VS-HMM
model. The position of the molecular motor is sampled at
discrete times t ¼1, 2,.T , where each unit of time repre-
sents a frame of the electronic camera. The measured
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Fiona E. Müllner’s present address is Department of Cellular and Systems
Neurobiology, Max Planck Institute of Neurobiology, 82152 Munich-
Martinsried, Germany.

Editor: Marileen Dogterom.

! 2010 by the Biophysical Society
0006-3495/10/12/3696/8 $2.00 doi: 10.1016/j.bpj.2010.09.066

3696 Biophysical Journal Volume 99 December 2010 3696–3703

mailto:fred.sigworth@yale.edu
mailto:selvin@uiuc.edu
http://dx.doi.org/10.1016/j.bpj.2010.09.066
http://dx.doi.org/10.1016/j.bpj.2010.09.066


position values are yt, and the collection of all of the
measurements is called Y. The true position is xt ˛ {1, 2,
. M}, which is mapped into the periodic variable ut ˛
{1, 2, . m} to simplify the computations. The molecular
state at time t is st ˛ {1, 2, . n} and the combination
(st,ut) of the molecular state and the position is called the
composite state of the system.

In the Markov model, the probability of the transition
from the composite state (i,u) at time t to the composite state
(j, uþw) at t þ 1 is given by cij(w). Thus, cij(0) is the prob-
ability of making the molecular transition from i to j with no
change in position. Similarly, it is formally possible to have
a position change of size w with no change of molecular
state; this probability would be given by cii(w). In special
cases, we therefore can construct models with only one
molecular state by assigning nonzero values to cii(w).
Such models carry out steps in position with Poisson-
distributed dwell times. In all cases, c must satisfy the
stochastic condition

Xn

j¼ 1

Xm=2#1

w¼#m=2

cijðwÞ ¼ 1:

The parameters of the hidden Markov model are the noise
standard deviation s0, the initial probability piu (which is
the probability of being in state i and position u at t ¼ 1),
and the transition probabilities cij(w). An additional param-
eter, which will be discussed below, is the vector of baseline
vertices kr. All of the parameters are varied to maximize the
likelihood L or, alternatively, the posterior probability.

Markov model extensions

The integrating-detector HMM

In the previous article (3), we modeled the measurement
error by adding a Gaussian random variable gt to the instan-
taneous motor position ut, that is

yt ¼ ut þ gt:

This would be correct if the continuous motion of the motor
were sampled at discrete times. However, when a frame-
transfer CCD camera is used for distance measurements,
the single-molecule fluorescence measured at time t has
been integrated for essentially the entire time interval from
t–1 to t. A realistic model should take into account the inte-
gration time of the position measurement. To a very good
approximation, the estimated position of the fluorophore
will equal its average position over the (t#1, t] interval. Let

h be the measurement duty cycle—the fraction of the time
interval during which the optical signal is integrated. Then,
assuming at most one step during each sample interval, the
measured position can be described as

yt ¼ ut þ gt þ rð1# tÞðut#1 # utÞ: (1)

Here, the two additional random variables are: r, a switch
variable that takes the value 1 with probability h, and is
0 otherwise; and t, which is uniformly distributed on
[0,1]. They describe the fact that a step can occur at any
time relative to the camera’s integration interval (Fig. 1).
Strictly speaking, t should have a truncated exponential
distribution, reflecting the exponential dwell times of an
underlying continuous Markov process. However, with the
assumption that the time between steps is long in compar-
ison to the sample interval, its distribution is well approxi-
mated as uniform.

Based on this representation of the measured value, we
can redefine the emission probability of the HMM (see
Eq. 5 of (3)) as the probability density bt(yt, ut#1, ut) of yt
given the model l and the true positions ut and ut#1 at that
time and at the previous time point.

Let us define the reduced deviation

yt;t0 ¼ ðyt # hðtÞ # ut0Þ=
ffiffiffi
2

p
st;

where h(t) is a function representing the baseline drift, and
s2t is, as before, the time-dependent variance computed ac-
cording to s2t¼ s20 I0/It. Here, s0 is a parameter to be deter-
mined, the nominal standard deviation; I0 is the maximum
reporter fluorescence intensity in the recording; and It is
the intensity during the measurement for time point, respec-
tively. The emission probability is then given by

btðyt; ut#1; utÞ ¼ f " ffiffiffiffiffiffi
2p

p
st

##1
exp

$
#y2t;t

%
; ut#1 ¼ ut

1# hffiffiffiffiffiffi
2p

p
st

exp
$
y2t;t

%
þ h

2ðut#1 # utÞ
½erfðyt;t#1Þ # erfðyt;tÞ'; otherwise

: (2)

FIGURE 1 Integrating-detector model; three realizations of a step occur-
ring between t and tþ1 result in three different observed positions yt (solid
circles). If the step occurs during the deadtime (instance 1; corresponds to
r ¼ 0 in Eq. 1) the observed position at time t will reflect the full size of the
step. Steps occurring after the deadtime (instances 2 and 3) result in smaller
observed position changes, according to the variable t in Eq. 1).
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This new form for b defines the integrating detector version
of our algorithm, denoted VSI-HMM. In the previous article
(3), b was simply a Gaussian probability density with mean
ut. The addition of a third argument, the true position of the
motor at the previous time point, results in small changes to
the forward-backward and reestimation algorithms. For
example, the calculation of the forward variables ai,
described in Eqs. 9–11 of Müllner et al. (3), is now carried
out as follows. Initialization is based on the assumption that
the motor position has remained constant over the previous
time step,

a1ði; uÞ ¼ piub1ðy1; u; uÞ

and the recursion formula is

atþ 1ðj; vÞ ¼
Xn

i¼ 1

Xm

u¼ 1

atði; uÞcijðv# uÞbtþ 1ðytþ 1; u; vÞ;

t ¼ 1; 2;.T:

(3)

The likelihood is obtained, as before, from the final a-value
as

PðYjlÞ ¼
X

i;u

aTði; uÞ:

It can be seen that the number of terms in the sums of Eq. 3
is unchanged, and the computational intensity is increased
only by a small constant factor. However, the acceleration
of the computation of the forward variables through the
use of fast Fourier transforms is no longer possible. The
same holds for the computation of the backward variables
bt and the reestimation variables gt and xi (see Eqs. 17–19
of (3)). In addition to the changes in these calculations,
a straightforward change was also made to the Viterbi algo-
rithm to incorporate the new form of the b function.

MAP estimation of transition probabilities

Let l¼ (t, C, s0) be the parameters of the VSI-HMMwhich
are to be optimized: p is a vector of the initial probabilities,
C is the matrix of transition probabilities cij(w), and s0 is the
noise parameter. The likelihood, L, is defined to be the prob-
ability P(Yjl) of the observed data sequence Y ¼ y1, y2, .,
yT, given the model.

Maximum a posteriori (MAP) estimation is an extension
of the maximum likelihood (ML) method in which prior
information, in the form of a prior probability function
P(l), conveys knowledge about the likely values of model
parameters. Where ML estimation maximizes the likelihood
P(Yjl), MAP estimation maximizes the posterior probability
P(ljY) which is proportional to P(Yjl)P(l). It thus incorpo-
rates the prior information, available before the experi-
mental data are considered, and provides an optimum
posterior estimate after including the information from the

experimental data. In practice, the effect of the prior is
substantial only when the information provided by the
data Y is meager.

Consider the model parameter cij(0), which is the proba-
bility of remaining in the state i and making no position
change during a single time step. For simplicity, we will
use ci in this section as a shorthand for cii(0). Chemical
rate theory says that, although the dwell time is an
exponentially distributed random variable, its mean value
td ¼ 1/(1#ci) is, in turn, an exponential function of the acti-
vation energy. The application of classical ML estimation
implicitly assumes that all values of the ci parameter
between zero and one are equally likely. Thereby, one
implicitly assumes that the activation energy E is distributed
f e #E/kTwith the system’s thermal energy given by kT; that
is, large activation energies are exponentially less common
than smaller ones. From the very broad range of mean
dwell-times observed in single-molecule experiments such
as single-ion-channel recordings, the uniformity assumption
for ci appears not to be valid. Guided by this prior
knowledge, we assume instead that activation energies are
taken from a uniform distribution. In this case, the mean
dwell time td ¼ 1/(1#ci) will have a probability density
proportional to 1/td, and ci will have the prior probability
density

pðciÞf
1

1# ci
:

This prior probability density ensures that values of ci
between 0.9 and 0.91 (mean dwell times of 10 and 11 units)
are assumed a priori to be as likely as values between 0.99
and 0.991 (dwell times of 100 and 110 units), and mean
dwell times will be exponentially distributed. Unfortunately,
this function is unbounded as ci / 1. We therefore include
a parameter 3, representing the lowest expected transition
probability out of state i, to obtain

pðciÞf
1

1# ci þ 3
: (4)

In the simulations described in this article the choice of 3
had little influence on the results; we conclude that a very
rough estimate is sufficient. If truly no information about
mean dwell times is available, one choice for its value could
be 0.7/T, corresponding to a 0.5 probability that at least one
transition out of state i would occur within the entire obser-
vation period.

The maximization of the posterior probability P(Yjl)P(l)
can be carried out using the E-M algorithm. The prior prob-
ability densities are denoted p(ci) for i ¼ 1., n. Maximiza-
tion of the Q function of the E-M iteration under the
constraints that

X

j;w

cijðwÞ ¼ 1
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yields equations for the kþ1st estimates of the ci,

ci
X

fj;wgsfi;0g

XT#1

t¼ 1

xðkÞt ði; j;wÞþ

ðci # 1Þ
XT#1

t¼ 1

xðkÞt ði; i; 0Þ þ ciðci # 1Þd lnpðciÞ
dci

¼ 0;

(5)

where xt (i,j,w) is the probability of making a transition at
time t from molecular state i to j with a step of size w, given
the data Y and the model l. The remaining cij(w) are ob-
tained as

cðkþ 1Þ
ij ðwÞ ¼

PT#1

t¼ 1

xðkÞt ði; j;wÞ

P
fh;wgsfi;0g

PT#1

t¼ 1

xðkÞt ði; h;wÞ

$
1# cðkþ 1Þ

i

%
: (6)

The reestimation formulas in Eqs. 5 and 6 generally hold for
all prior probability densities which fulfill minimal require-
ments (differentiability and boundedness on [0,1]). Note
that for uniformly distributed ci, Eqs. 5 and 6 are identical
to Eq. 22 of Müllner et al. (3), the classical ML estimation
formula. We employed MAP estimation in the comparisons
with step detectors in Figs. 2 and 3, with the prior proba-
bility Eq. 4 for p(ci) and the parameter value 3 ¼ 0.005
chosen to model a maximum expected dwell time of ~200
time points. As it turned out, however, the inclusion of the
prior probability densities made very little difference to
the results of these simulations.

Baseline drift

It is also possible to estimate parameters describing a drifting
baseline. We model the baseline drift as a piecewise-linear

function, as was done in Venkataramanan and Sigworth
(4). Let the T sample points be divided into R segments,
each D ¼ T/R points long. Defining a set of triangular-pulse
functions

hrðtÞ ¼ max

&
1# jt # rDj

D
; 0

'
;

r ¼ 0.;R;

the baseline function can be expressed in terms of the Rþ1
vertex values kr,

hðtÞ ¼
XR

r¼ 0

krhrðtÞ: (7)

The E-M reestimation of the vertex values is equivalent to
a weighted least-squares problem expressed by

Uk ¼ G; (8)

where the matrix U and vector G are given by

Urs ¼
X

t

hrðtÞhsðtÞ=s2
t

and

Gr ¼
X

t

hrðtÞ

 

yt #
X

i;u

ugtði; uÞ

!,

s2
t :

The process of baseline reestimation is carried out as
follows. At the kth iteration, the set of vertices kr

(k) is used
to compute the baseline function according to Eq. 7, and
this function is used to evaluate the emission probability
(see Eq. 2) and, through the forward-backward algorithm,
the state probabilities gt

(i)(i,u) (Eq. 18 of (3)). Equation 8
is then solved to yield the new set of vertices kr

(kþ1).

FIGURE 2 Comparison of the performance of
the VSI-HMM-Viterbi algorithm with the c2

detector of Kerssemakers et al. (6). (A) Motor
time courses, each containing 200 steps of size
8 nm with mean dwells of 24 points, were gener-
ated using the continuous-time simulator. From
the HMM-Viterbi restorations the Number of 8’s
metric of Carter et al. (1) was evaluated and
plotted. This metric counts the number of detected
steps that occur at the correct time (52 sample
intervals) and have the correct size (8 5 3 nm);
error bars indicate the standard deviations from
10 trials at each mean step duration. The perfor-
mance with root mean square noise levels of 5
and 7 nm (circles and triangles) was superior to
that from the filtered c2 detector even at the lower
noise level of 3 nm (dashed line, data from Fig. 6
of (1)). MAP estimation with 3 ¼ 0.001 was em-

ployed, although indistinguishable results were obtained with 3 ¼ 1, that is with essentially no effect from the MAP prior probability. (B) Steps recovered
by VSI-HMM-Viterbi from 18 simulations, each with s ¼ 6 nm and comprised of 50 steps of size 4 nm. Even at the large noise level, the small steps are
detected with high accuracy: mean¼ 3.6 nm, standard deviation¼ 2 nm. The c2 detector finds a broader distribution of step sizes that extends beyond 8 nm.
(C) Same as in panel B but with all simulated steps 8 nm in size. The steps were detected with almost no error. In comparison, the c2 method found a broad
range of step sizes. In panels B and C, the simulation assumed a mean velocity of 300 nm/s and a frame rate of 2000 s–1; MAP estimation was employed, with
3 ¼ 0.005, and the c2 detector data are from Fig. 8c and 8d of Carter et al. (1).
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Simulation

Simulations of stepping time courses in this article were
created with a continuous-time simulator based on the Gil-
lespie algorithm (5). Dwell times are obtained as exponen-
tially distributed random numbers, and the times of
stepping events are not assumed to be synchronized with
the sampling times. The sampled position is therefore the
output of a boxcar filter with the integration time equal to
h, so that detector integration is accurately modeled. Unless
noted, both the simulation and the analysis employed h ¼ 1.
To each position value, a Gaussian random number is added
to emulate the measurement noise.

As in the algorithms described in the previous article (3),
the simulator and VSI-HMM algorithms were implemented
using MATLAB, in functions named StepSimulatorC.m,
ForwardBackward_3.m, and ViterbiRestoration.m. This
code and example scripts can be found at The MathWorks
File Exchange site, www.mathworks.com/matlabcentral/
fileexchange/24697.

RESULTS

Recently, Carter et al. (1) assessed the strengths and weak-
nesses of a number of step-detecting methods currently avail-
able to analyze noisy motor-protein recordings. The authors
defined three performance metrics to allow evaluation of the
performance of several algorithms; the c2 detector of Kersse-
makers et al. (6) performed the best overall. Here, we compare
performance of theVSI-HMMwith that of thec2 stepdetector.

To use HMM signal processing as a step detector, ML or
MAP estimation must first be applied to optimize the para-
meters of the hidden Markov model. These parameters are
the step-size distributions and transition probabilities. For
the tests shown here we used the one-state HMM, which
models the very simple kinetics of Poisson-distributed dwell
times. In the analysis, the starting parameter values corre-
sponded to a uniform distribution of step sizes over the
range of #32 to 32 nm, and a mean dwell time of 10 points.
After 100 iterations, the model was deemed to have

converged; at this point the model parameters, along with
the original simulated time course, were fed to the Viterbi
reestimation algorithm to provide a restoration of the noise-
less time course.

Fig. 2A shows as a performancemetric the fraction of steps
found to have the correct amplitude (8 5 3 nm) from a
simulation containing 200 steps with mean dwell time of
48 points. By this metric, the VSI-HMM-Viterbi idealization
performs better at all values of the mean dwell time. For
example, when the data have a noise standard deviation
s¼ 7 nm, theVSI-HMM-Viterbi method yields better results
than the c2 detector does when the noise is only s¼ 3 nm.
Carter et al. (1) also compared the ability of step detectors
to identify steps of 4 or 8 nm, with dwells of 27 or 53 time
points, respectively, in the presence of noise having s ¼
6 nm. VSI-HMM-Viterbi restorations of these trajectories
(Fig. 2, B and C) show narrow distributions of step sizes
with mean values of 3.6 and 8 nm. In contrast, the c2 detector
found very broad distributions (0.5–17.5 nm) in both cases
and failed to find a peak near 4 nm.

In Fig. 3, three more comparisons are made between the
VSI-HMM-Viterbi step detector and the detectors examined
by Carter et al. (1), as the noise level is changed. In every
case the HMM analysis is greatly superior to the step detec-
tors. Indeed, roughly equivalent levels of detection fidelity
are obtained at nearly twice the noise level with the HMM
detection scheme.

The VSI-HMM algorithm explicitly accounts for the
intermediate data points that result inevitably from the
detector’s integration during a tracking experiment. Fig. 4 A
shows part of a 500-datapoint simulation with large
64-nm steps alternating with short steps randomly picked
(with equal probability) to be 20 or 10 nm in size, as used
previously ((3), Fig. 1D). The simulation included the effect
of the detector integration time with a duty cycle h ¼ 1;
consequently, an intermediate position value resulted when-
ever a step was taken. Despite the large noise and the inter-
mediate data points, the Viterbi restoration based on the
proper HMM with h ¼ 1 (Fig. 4 B) reproduced the steps
accurately. These data were also analyzed with the simpler

FIGURE 3 Further evaluation of the VSI-
HMM-Viterbi reconstruction (-) of a simulated
stepping time-course. These data are compared
with the results of simulations using c2(;), and
t-test (:) detectors with optimized filters as re-
ported by Carter et al. (1). The three metrics of
Carter et al. (1) are shown: panel A plots the frac-
tion of actual steps that are detected (that is, the
fraction of true positives); panel B plots the frac-
tion of the detected steps that correspond to actual
ones (that is, unity minus the fraction of false posi-
tives); and panel C shows the percentage of 8 nm
(53 nm) steps in the population of true positive
events. The task assigned to each step detection

method was to interpret simulations having 200 steps of size 8 nm and mean dwell time of 24 points. This was repeated multiple times for each value of
added Gaussian noise. Error bars on the HMM data are standard deviations of the respective results from 20 different simulations. Data for the t-test and
c2 are taken from Fig. 5 of Carter et al. (1). The HMM algorithm performs better than the other methods in all three metrics, in particular when noise is large.
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VS-HMM (Fig. 4 C) in which intermediate position values
are not modeled (h ¼ 0). Unable to differentiate between
an actual transition and a position point corresponding to
the molecule being in transit, the simplified HMM finds
kinetic events with steps of various sizes that differ from
the true 64-, 20-, and 10-nm steps (inset of Fig. 4 C).

The simulation in Fig. 4 B also serves as a test of the appli-
cation of theVSI-HMM, fundamentally a discrete-time algo-
rithm, to the simulated continuous-time stepping process.
One of the mean dwell times in the simulated data was
only five time points, which might be expected to yield
missed-event errors, as discussed in the preceding article
(3). Nevertheless, the VSI-HMM obtained high-quality esti-
mates for the step sizes and dwell times. In the analysis of 20
independent simulations, the estimates of the 10-, 20-, and
64-nm step sizes, taken as the center of mass of the peaks
of the step-size distribution cij(w), were (mean 5 SD):

10.85 2.1, 21.15 1.4, and 65.15 1.2 nm. The mean dwell
times were estimated (according to Eq. 2 of the preceding
article (3)) to be 10.55 1.9 and 5.85 2.1 time points. These
values are quite close to the simulatedmean dwell times of 10
and 5 time points and the standard deviations are reasonable,
particularly in view of the fact that the finite number of steps
in a 500-point simulation, in itself, yields a sampling error of
~17% in the mean dwell times.

Finally, we applied the HMM to actual experimental data
obtained under demanding conditions. Fig. 5 A shows the
recording of a myosin V motor tagged on a calmodulin
site with a fluorescent dye. The myosin V walked in the
presence of 300 nM ATP on actin in vitro while two orthog-
onally polarized beams alternately excited the dye molecule
every 0.5 s (see Methods in (7)). Under these conditions, the
emission showed strong fluctuations (Fig. 5 A, lower panel)
as the motor protein switched between orientational states
whereas translocating hand-over-hand on actin. Due to the
intensity modulations, the noise variance was itself time-
dependent. Application of a two-state VSI-HMM to the
data (with h ¼ 1 to match the CCD camera duty cycle)
resulted in the restoration (red line) with alternating 64-
and 10–12-nm steps. The deduced ATPase rate of 0.27 s#1

is in very good agreement with that expected for myosin
V given an ATP concentration of 300 nM (8). Although
the 64-nm steps are straightforward to note by eye, several
of the 10-nm steps are obscured due to noise. An analysis
by eye would therefore have categorized the molecule as
a 74-0-74 type stepper (9). However, by directing the Viterbi
restoration along the points with low variance, the HMM
analysis successfully uncovered the 64-10 nm pairs. Single
myosin V recordings at lower ATP concentration and higher
S/N do indeed support the HMM conclusion that in many
cases the apparent 74-0 steppers are 64-10 types (7).

Fig. 5, B and C, shows a recording of a Xenopus melano-
phore melanosome being transported by the motor proteins
cytoplasmic dynein and kinesin 2 in vivo (10). Here, we
define increasing position as movement away from the
cell nucleus (anterograde). Melanosome images were
captured with bright-field illumination every 2 ms. Small
step size, high rate of ATP turnover, and large instrumenta-
tion noise at this acquisition rate, make the recording diffi-
cult to interpret by eye. Fig. 5 B shows a 540-ms stretch of
the recording during which the melanosome is apparently
moving steadily away from the nucleus. Analysis with
a one-state HMM, however, revealed both retrograde and
anterograde steps in this recording, as well as in the full
1.5 s recording shown in Fig. 5 C, indicating the presence
of dynein and kinesin. In both cases the step-size distribu-
tions peaked at 54–5 nm (see insets) and not ~8 nm in
size, as expected from single kinesin or dynein tracks
(11,12).

In the estimated distribution of step sizes for Fig. 5 B, the
fraction of positive steps larger than 7 nm was <5%. In the
longer recording in Fig. 5 C, this fraction was <2%.

FIGURE 4 Analysis of a recording with intermediate points. (A) Portion
of a stepping time-course from the continuous-time simulator. The kinetics,
step sizes (see inset histogram), and noise level (7 nm) are identical to those
in Figs. 1 and 2 of the previous article (3); however, now the simulation
includes the effect of detector integration time, with duty cycle h ¼ 1.
(B) Analysis based on the VSI-HMMwhich includes the integration effects
withh ¼ 1. The Viterbi restoration (solid line) is compared with ground
truth, that is the original simulation without noise (circles). Steps are iden-
tified accurately despite the presence of intermediate points as identified in
the histogram of restored step sizes shown in the inset. Parameters of the
VSI-HMM analysis were T ¼ 500, n ¼ 2, and m ¼ 190, with the quantum
of position being 1 nm; each iteration required 3.4 s on a 2 GHz processor
and convergence was complete after 100 iterations. (C) Analysis with the
nonintegrating VS-HMM. Due to the FFT speed-up, the VS-HMM required
only 0.6 s per iteration, but it did not reliably distinguish the two popula-
tions of small steps. The restoration (solid line) has large errors and the
histogram of restored step sizes (inset) shows spurious step sizes.
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The small steps are most likely a consequence of multiple
motors interacting with the same cargo. This in vivo result
is consistent with the recent in vitro gliding assays results
of Leduc et al. (13). That the retrograde movements are
largely due to dynein, and not kinesin-2 switching between
backward and forward steps, is deduced from the fact that
the intracellular drag force on a ~600-nm load moving
~100 nm/s is< 5 pN (14), smaller than forces where kinesin
bidirectional stepping becomes dominant (15).

How can one assess the level of certainty of concluding
that there are negatively-directed movements, or that there
are stepwise movements at all?

This can be done by comparing log likelihood values.
When, in the model, the steps were restricted to only positive
values, the log Likelihood L dropped by 40 units, a highly
significant decrease corresponding to a likelihood ratio of
e–40 z 10#17. Further, constraining step sizes to be outside
the range of –4 nm toþ7 nm caused L to decrease by 83 units,
strongly indicating the presence of steps%7 nm in size. That
the data represent stepwise movement and not just a drift was
verified by fittingwith amodel inwhich therewere no steps at
all, but just a linear baseline drift pluswhite noise. In this case
the likelihood decreased by 94 units. Furthermore, the steps
are likely not to be artifacts of the detection system, because
they were observed in several cases when the sample interval
was varied between 1 and 2.5 ms.

We also applied the VSI-HMM analysis to synthetic time-
courses with similar statistics (see Fig. S1 in the Supporting
Material). The combination of a linear ramp and white noise
yields, as expected in the HMM analysis, a rapid succession

of minimal-sized steps. On the other hand, analysis of
a combination of a linear ramp and Lorentzian noise yields
positive and negative steps ~4 nm in size. This example
illustrates that the results of the analysis are based on the
model assumption—that discrete steps underlie the motor
motion—and that application of the analysis to inappro-
priate datasets can attain misleading results. Nevertheless,
we conclude that the underlying events in Fig. 5 B are
clearly smaller than 8 nm in magnitude.

Previous analyses of intracellular transport have focused
exclusively on high S/N portions of long trajectories that
are readily interpretable by eye. This raises the possibility
of an observer bias in favor of large steps, ~8 nm in magni-
tude (such as in Fig. S2), with the observer avoiding record-
ings of tugs-of-war between different motors or multiple
motors pulling in the same direction (16,17). The new
VSI-HMM method allows better investigation of typically
noisy in vivo recordings. In this instance, HMM analysis
of a single melanosome transport shows that in living cells
there are cases where uncoordinated ATPase activity of
several motors can, in fact, lead to ~54–5 nm steps.
This is most readily explained by two kinesins (þ direction),
or two dyneins (# direction) pulling on the cargo in a nonco-
operative manner (13). It is also possible that there is a tug-
of-war between kinesin(s) and dynein(s).

DISCUSSION

The new algorithm offers several advantages over existing
strategies. In terms of simple step detection, the method

FIGURE 5 Applications of the HMM algorithm
to experimental recordings. (A) Measured position
(gray diamonds) of a processive myosin-V motor
labeled on the calmodulin site closest to its motor
domain (upper inset). HMM analysis and restora-
tion (solid staircase and inset histogram) reveal
alternating 64-nm and 10-nm steps. Imaging with
alternating orthogonal excitation polarizations
(see (7)) produced large modulations in the emis-
sion intensity (bottom panel) as the motor protein
underwent conformational changes. The intensity
data were incorporated into the noise model. Polar-
ization changes, indicated by differences in inten-
sity between successive frames (middle panel)
accompany steps as found in the Viterbi restora-
tion; three such steps are marked with vertical
dashed lines. (B) Position data obtained from
bright-field illumination of a melanosome being
transported in vivo. Viterbi restoration (solid stair-
case) shows bidirectional stepping, presumably
forward due to kinesin 2 and backward due to
dynein. The MAP-estimated step size distribution
(inset) indicates the majority of steps to be
~5 nm in size, and not 8 nm. The data show an
overall positive slope, but reveals a large number

of backward steps. In the Viterbi reconstruction, there are 32 forward and 24 backward steps. (C) A longer stretch of the same recording. Outside of the
portion shown in panel B (shaded region) there are almost equal numbers of forward and backward steps, suggesting an even stronger tug-of-war among
the microtubule-binding motor proteins.
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yields more accurate results than the current state-of-the-art
techniques (Figs. 2 and 3). Compared to currently available
Markov-model based methods (2,18), the VSI-HMM is
quite insensitive to the choice of initial model parameters,
making it an effectively automatic algorithm for interpreting
poor S/N recordings (see also (3)).

Additionally, the VSI-HMM includes three critical tech-
nical advances:

First, the VSI-HMM explicitly handles the experimen-
tally unavoidable intermediate points that arise from the
finite integration time of the detector. Large errors can
appear in interpretation if the analysis method is unable to
account for the points, and we have shown how the new
method rectifies this problem (Fig. 4).

Second, the VSI-HMM method directly accommodates
time-varying noise due to large variations in photon flux
from single fluorescent reporters (Fig. 5 A and Fig. S2 A)
or absorbance reporters (Fig. 5 B).

Third, the implicit assumption of uniformly distributed
dwell times can be corrected by incorporating the model
in a MAP framework.

Owing to the inherent confusion in interpreting noisy
recordings by eye, conclusions from single-molecule exper-
iments are often limited by data quality. In the case of
in vitro stepping data, the HMM clearly shows that myosin
V motors previously thought to show 74 nm and 0 nm are in
fact 64-10 nm walkers; when their time courses are fitted by
eye, one easily misses the small steps (9). Although previous
HMM analyses find small steps if the hypothesis of small
steps is tested explicitly (18), the improved method pre-
sented here can automatically uncover their presence. Inter-
pretation of in vivo data is another such example, where
a lack of sophisticated methods has been restricting the level
of details that could be derived from high-resolution traces.

Here we have shown how the new, robust VSI-HMM
approachpermitswholesale dissectionof longandnoisy trans-
port data. Our HMM analysis has revealed that there are bidi-
rectional steps, a large fraction of which are smaller than 8 nm
in size, from an in vivo recording of melanosome transport.
This establishes that more than one kinesin or dynein are
involved in intracellular cargo transport, a subject of consider-
able controversy (19), although how they cooperate or
compete remains an open question. Approaches such as the
one presented here provide rapid and unbiased ways of
analyzing difficult results and its availability should provide
an alternative way to circumvent some of the constraints
currently hindering single-molecule experiments.

SUPPORTING MATERIAL

Two figures are available at http://www.biophysj.org/biophysj/
supplemental/S0006-3495(10)01250-6.
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