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SUPPLEMENTARY TEXT 

Imaging.  A typical microscope setup will include a 60-100x, high numerical aperture objective; 1.5x 

or 1.6x internal microscope magnification; and a sensitive EMCCD array camera.  The width of a single 

pixel in the fluorescence image will correspond to the real, physical widths of the camera pixels divided 

by the total magnification of the sample.  The size of the image pixel should be approximately half the 

width of the fluorescent spot image of a single fluorophore 1 .  For example, for the experiments in this 

report, we used either an Olympus IX70 or IX71 microscope with a 1.45 NA 100x objective and an 

additional 1.5x or 1.6x internal lens (making the total magnification 150x or 160x, respectively).  We 

used an Andor iXon (model DV8-87-E-CS-BV) or iXon+ (model DU-897E-CS0-#BV) camera with a 

pixel width of 16 um.  This gives an effective image pixel size of 106.7 nm with 150x optical 

magnification, or 100 nm for 160x magnification.   

Prior to acquiring data, it is useful to attempt to optimize the laser intensity and camera settings.  

Saturated pixels are to be avoided; however, making full use of the dynamic range of the camera is 

important in order to maximize signal-to-noise ratios.  For EMCCD cameras, the gain should be set high 

enough to clearly see individual fluorophores at low density.  Frame acquisition should be fast enough 

to be able to separate photobleaching and blinking events in time.  As the density of fluorophores 

decreases and the average time interval between photobleaching events increases, the frame acquisition 

time can be increased.  

Polymerizing tubulin.  We prepared fresh polymerizing solution (1 mM GTP, 1 mM DTT, 50% 

glycerol in BRB80, pH 6.8).  2 μL biotinylated or fluorescent tubulin stock solution (20 μg/μL) was 

mixed with 5 μL native tubulin stock solution (10 mg/mL) on ice to prevent polymerization.  7 μL of 

prepared polymerizing solution was mixed with the tubulin solution.  The resulting solution was 

incubated at 37˚C for 15-30 minutes.  86 μL centrifugation solution (20 μM paclitaxel and 1 mM GTP 

in BRB80, pH 6.8) was then added to microtubules and gently mixed.  The solution was centrifuged at 

24˚C at 15,000 g for 30 minutes.  The supernatant was removed, and the pellet was resuspended in 100 
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μL centrifugation solution.  The resulting microtubules were stored at room temperature. 

Imaging TMR-labeled microtubules in vitro.  The starting labeling density was approximately 4:1 

unlabeled:labeled tubulin monomers (Cytoskeleton, Cat. No. TL238 and TL590M).  Microtubules were 

attached to a coverslip coated with truncated kinesin.  The microtubules were excited using 532 nm 

laser excitation and total internal reflection fluorescence (TIRF) microscopy.  Beta-mercaptoethanol 

(Fluka) and oxygen scavenging reagents (PCA and PCD) were used to improve fluorophore stability 2. 

Imaging microtubules in cells using indirect antibody staining.  COS-7 cells were seeded at low 

density in 35 mm glass bottom dishes and 2 mL DMEM with 10% FBS one day prior to antibody 

staining.  The cell medium was replaced with OPTI-MEM (Gibco) 2 h prior to labeling.  The medium 

was then removed and replaced with ~2 mL PBS.  The PBS was replaced with 1 mL methanol that was 

stored at -20˚C.  The cells were fixed 5 minutes before replacing the methanol with 2 mL PBS with 

0.1% Triton X-100.  The cells were washed two more times with 2 mL PBS, waiting 5 minutes between 

washes.  The PBS was then replaced with 2 mL blocking solution (3% [w/v] BSA and 0.5% Triton X-

100 in PBS, filtered using 0.22 µm syringe filter) and incubated at room temperature for 1 h.  The 

blocking solution was then replaced with 2 mL of 1:100 dilution of DM1A anti-tubulin antibodies (Cell 

Signaling Technology, Cat. no. 3873S) in antibody dilution solution (0.4 g BSA and 120 μL Triton X-

100 in PBS, filtered), and the cells were incubated at 4˚C overnight.  In the morning, cells were washed 

three times with 2 mL PBS, with 5 minutes between washes.  The PBS was replaced with 1 mL 1:100 

dilution of secondary antibody stock solution (either CF633 conjugated goat anti-mouse [2 mg/mL, 

Biotium, Cat. No. 20120-F], Alexa647 conjugated goat anti-mouse antibodies [1-2 mg/mL, Cell 

Signaling Technology, Cat. No. 4410], or rhodamine conjugated goat anti-mouse antibodies [1-2 

mg/mL, Jackson Immunoresearch Laboratories, Cat. No. 115-026-062]) in antibody dilution solution 

and incubated 2 h at room temperature.  The cells were again washed three times with 2 mL PBS, 

waiting 5 minutes between washes.  Finally, the PBS was replaced with 100 mg/mL PCA and 20 μL of 

5 µM PCD in 2 mL PBS immediately prior to imaging.  CF633 was excited using 594 nm laser 
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excitation in TIRF microscopy.  Frames were acquired at 20 Hz, and because of the excellent brightness 

of the dye, we were able to use a very low EMCCD gain, which improved the dynamic range of the 

camera.  Rhodamine was excited using 532 nm laser excitation, and Alexa Fluor 647 was excited with 

633 nm excitation. 

Imaging microtubules using fluorescent paclitaxel.  Yellow-green fluorescent beads (Invitrogen, 

Cat. no. F-8787), used as fiduciary markers, were diluted in water and 12 mM HCl.  The beads were 

flowed into a sample chamber and incubated >5 minutes.  The chamber was then washed with 100 μL 

BRB80.  20 μL of 1 mg/mL kinesin was then added to the chamber and incubated for 5 minutes.  The 

chamber was then washed with 100 μL BRB80, and 20 μL of microtubules diluted in BRB80 was added 

to the chamber and incubated for 5 minutes.  Finally, 100 μL of imaging solution, consisting of 96 μL 

BRB80, 1 μL 700 nM Oregon Green Taxol (Invitrogen, Cat. no. P22310), 1 μL of 5 µM PCD, and 2 μL 

of 50 mg/mL PCA (pH 7.4), was flowed into the chamber.  Imaging was done using 488 nm laser 

excitation.  We also tried using BODIPY 564/570 paclitaxel (Invitrogen).  Unfortunately, in this case we 

found an excessive amount of non-specific binding of the dye to the coverslip surface.   

Expression and purification of streptavidin S45A.  The streptavidin S45A plasmid was a gift from 

Patrick Stayton’s lab and has been described previously 3.  Streptavidin S45A was expressed in E. coli, 

cells were lysed, and inclusion bodies were pelleted.  Pellets were washed extensively, then dissolved in 

guanidine hydrochloride.  Streptavidin was refolded and concentrated following the method of Howarth 

et al. 4.  In more detail: 

E. coli BL21 (DE3) cells were transformed with the plasmid and grown on agar plates containing 

ampicillin overnight.  A 15 mL overnight culture of LB with 50 μg/mL ampicillin was inoculated and 

grown at 37˚C with shaking.  1.5 L of LB medium and 50 μg/mL ampicillin was inoculated using the 

overnight culture.  The culture was grown with shaking at 37˚C for 4-5 hours until OD600 = 0.7.  Then 

protein expression was induced by adding isopropyl-β-D-thiogalactopyranoside (IPTG) to make a final 

concentration of 100 μg/mL.  The cells were grown for another 4 h, at which point the cells were 
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harvest by centrifuging at 8000 g for 5 minutes.  The supernatant was discarded, and the cell pellet was 

stored overnight at 4˚C. 

The cell pellets were treated using B-PER (Thermo Scientific, Cat. no. 90078), following the 

manufacturer’s instructions.  The cell pellet was resuspended in 10 mL of B-PER.  10 mL more B-PER 

were added, and the solution was left to incubate 10 minutes on the bench top with occasional swirling.  

100 mL of inclusion body wash buffer (50 mM TrisHCl, 0.5% Triton-X100, 100 mM NaCl, 1 mM 

EDTA, 0.1% [w/v] sodium azide, and 1 mM DTT, pH 8.0) was then added, and the solution was mixed 

well.  The solution was then centrifuged at 27000 g for 10 minutes.  The supernatant was discarded.  

The pellet was then resuspended in 10 mL of inclusion body wash buffer, and 90 mL of additional 

inclusion body wash buffer were added.  The solution was centrifuged at 15000 g for 10 minutes.  The 

supernatant was discarded, and the pellet was again resuspended in 10 mL plus 90 mL of inclusion body 

wash buffer and centrifuged.  After this third wash, the pellet was resuspended in 10 mL plus 90 mL of 

inclusion body wash buffer that was missing Triton-X100.  The solution was centrifuged again at 15000 

g for 10 minutes.  The supernatant was discarded.  The pellet was then dissolved in 5.5 M guanidine 

hydrochloride in water at pH ~1.5.  250 mL of PBS was cooled to 4˚C.  Using a magnetic stir bar, the 

PBS was stirred rapidly so that the vortex reached the top of the stir bar.  The guanidine solution was 

then slowly added drop-wise to the fastest moving part of the solution.  The stir rate was reduced, and 

the solution was stirred overnight at 4˚C. 

In the morning, the solution was centrifuged at 17700 g for 15 minutes at 4˚C.  The supernatant was 

then returned to stir at 4˚C while the pellet, which was assumed to contain misfolded and aggregated 

protein, was discarded.  62.8 g of ammonium sulfate was then added, approximately 10 g at a time, to 

the stirring solution.  The solution was stirred at 4˚C for 3 h.  The solution was then passed through 

filter paper (Whatman 42) using vacuum filtration.  The flow-through was returned to stirring at 4˚C.  

59 g of additional ammonium sulfate was added all at once to the solution.  The solution continued to 

stir for three hours.  The solution was then centrifuged at 17700 g for 15 minutes at 4˚C.  The 
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supernatant was discarded, and the bottle was allowed to drain upside down on paper towels for 

approximately 2 minutes.  The pellet was then resuspended in 4 mL of PBS.  The solution was 

centrifuged at 14000 g for 5 minutes at 4˚C.  The supernatant was kept while the pellet was discarded.  

The OD280 was then measured by using PBS as a blank and assuming 0.1 mg/mL streptavidin for 

OD280 = 0.355.  The total yield measured in this way was 35 mg.  The solution was then further diluted 

in PBS to a final concentration of 0.7 mg/mL and stored at 4˚C. 

Imaging microtubules using streptavidin S45A.  10 μL of 1 mg/mL truncated kinesin solution was 

added to a flow chamber and incubated 5 minutes.  50 μL of blocking solution (50 μL 20 mg/mL casein, 

1 μL 10 mM ADP in PBS) was flowed into the chamber and incubated 5 minutes.  The chamber was 

then washed with 100 μL of 100 μM ADP in PBS, pH 8.2.  100 μL of microtubule solution (95 μL 100 

μM ADP in PBS, pH 8.2; 1 μL of 20 μM paclitaxel [Cytoskeleton] in DMSO; 5 μL of solution of 

biotinylated microtubules) was added, and the chamber was incubated 5 minutes.  100 μL of imaging 

solution (100 μL 100 μM ADP in PBS, pH 8.2; 0.5 μL 5 μM [biotin]-DNA-[Atto647N]; 4 μL of 1.3 μM 

streptavidin S45A in 10% sucrose in PBS, pH 8.2; 1 μL of 20 μM paclitaxel [Cytoskeleton] in DMSO) 

was then added.  Atto647N was imaged using 633 nm laser excitation in TIRF microscopy with a 0.5 s 

frame acquisition time. 

The [biotin]-DNA-[Atto647N] construct consisted of the following two single strands of DNA, 

annealed together: 

[Atto647N]-TGGCGACGGCAGCGAGGCTTTTTTTTTTTTTTTTTTTT  

[Biotin]-GCCTCGCTGCCGTCGCCA 

Simulating fluorophores.  For a single frame, fluorophores were simulated by plotting Gaussian 

functions, integrated over the area of single pixels.  Various levels of a flat background value were then 

added.  Finally, Poissonian noise was added to the frame using the Poisson distribution function in the 

GNU Scientific Library (GSL). 

For multiple frames and dynamic fluorophore simulations, fluorophores were allowed to switch 
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between fluorescing, temporarily inactive, and permanently photobleached states.  Unless otherwise 

stated, if a fluorophore switched states, the time of occurrence of the transition during the course of the 

simulated frame acquisition was chosen randomly as any time within the course of the frame.  The 

intensity of the fluorophore within that given frame was reduced according to the fraction of the frame 

acquisition time during which the fluorophore was simulated to be inactive. 

The probability of switching to a different was simulated by calculating switching probabilities that 

corresponded to the transition rates between the given possible states.  For our simulations, we limited 

ourselves to states corresponding to fluorescing, temporarily inactive states, or permanently 

photobleached states.  The simulated frame acquisition time was chosen to be longer than the lifetime of 

any of the possible states. 

Spot (fluorophore transition event) detection algorithm.  We used the following algorithm to 

automatically detect spots in the backwards-subtracted movie that correspond to photobleaching events: 

1. Dilate the image.  To dilate the image, each pixel’s intensity value is replaced with the greatest 

intensity value of the eight nearest neighbors, or it is unchanged if the pixel intensity is greater 

than that of any one of the eight nearest neighbors.  The image might have to be dilated twice 

(i.e., apply this step twice) for very low signal to noise ratios. 

2. Find the positions of all pixels that were not affected by the dilation.  These are the local 

maxima. 

3. Determine the average pixel intensity of all pixels within the radius R (usually R is chosen to 

be three pixels) of a given local maximum. 

4. Compare this with a chosen threshold value T (see below).  Local maxima with values that are 

above the chosen threshold are considered as potential “real” fluorophore photobleaching 

events. 

5. An output TIFF file is produced that can be compared with the original image file to check 

spot detection performance. 
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Spots corresponding to photoactivation events, which appear darker than background in the 

backwards-subtracted image, are detected in a very similar way, except in this case we look for local 

minima. 

The choice of threshold value T can be made by first calculating the expected value of the spot’s 

average pixel intensity.  This can be estimated by using 

  (S1) 

where σ characterizes the width of the two-dimensional Gaussian function and A is the peak intensity of 

the Gaussian function.  It can be noted that A is related to the total expected number of photons, I0 by 

  (S2) 

Since the fluorophore can photobleach anytime during the acquisition of a single frame, the threshold is 

chosen to be half the value of IBSA so that the threshold intensity is far enough below the expected 

photobleaching intensity so as to not miss steps.  For real data, setting an even lower threshold can be 

advantageous (although single photobleaching events might be mistaken as two sequential 

photobleaching events) since this essentially will reduce the amount of frame averaging performed 

when, for example, nearby fluorophores go into metastable dark states for only a fraction of a frame.  

These fraction-of-a-frame events, if significant, have the potential to introduce additional error if not 

identified. 

If the peak intensity and spot width of single fluorophores are not known a priori, the threshold 

can still be chosen by inspecting a small number of frames near the end of the backwards-subtracted 

movie where individual fluorophore transitions are more obvious.  The investigator can try threshold 

values until apparent transitions are identified or just start with a “ballpark” guess.  The median peak 

intensities and spot widths that are identified after fitting to Gaussian functions (see below) can then be 

used to estimate what an appropriate detection threshold value should be before analyzing the entire 

data set. 
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 To reduce the probability of treating two fluorophores that simultaneously photobleach as one, 

our analysis software also enables the user to set a maximum spot intensity threshold.  Spots with high 

intensity values are likely to correspond to multiple fluorophores that simultaneously photobleach (or 

photoactivate).  Spots that pass this threshold are recorded for purposes of calculating frame averaging 

ranges, but they are not used themselves for localizing their associated fluorophore events with 

Gaussian functions.  We find 1.5 IAPI to be a reasonable upper threshold.  Unfortunately, we currently 

have no method for detecting simultaneous photobleaching and photoactivation events that overlap in 

space. 

Probability of detecting false positives during spot detection.  In the case of no fluorophore transition 

event in the backwards-subtracted image, the expectation value of the associated pixels is zero; 

however, due to shot noise and camera noise, the actual pixel intensities fluctuate around zero.  Thus, 

for large fluctuations, there is the possibility of detecting false positives in the spot detection process.  

The actual average intensity of the N local pixels will be 

  (S3) 

where In is the intensity of the nth pixel.  The variance of the sum can similarly be estimated by 5 

  (S4) 

If the standard deviations of each pixel σn all equal σ, then eq. (S4) reduces to the more familiar 

  (S5) 

The probability that N random pixels will have an average pixel intensity IAPI greater than the spot 

detection threshold T (appearing as a photobleaching event) or less than –T (appearing as a 

photoactivation event) is then simply 

  (S6) 

For a numerical example, consider a flat, expected background pixel intensity of 10000 photons.  
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The variance of each pixel in the backwards-subtracted movie will be 200 photons2, considering only 

shot noise.  If the spot detection integration radius is 3 pixels, then 29 pixels total will be averaged, and 

σ2
API is approximately 6.9 photons2.  If we set T = 20 photons, then the probability of finding a false 

positive is 0.4%.   

If in the other extreme case the local maximum to be tested is centered on a Gaussian spot with 

peak intensity = 10000 photons, spot diameter ≈ 2.6 pixels, and no other fluorescent background, then 

since the sum of Poissonian variables gives a new Poissonian variable,  

  (S7) 

For T = 20, probability of finding a false positive in this case is 19% and does not drop to <1% until T > 

39.5 photons.  To detect an actual photobleaching event for such a background, however, the expected 

average pixel intensity for a fluorophore with peak intensity = 500 photons (making 20 fluorophores 

total in the composite spot) would be 170 photons.  We could therefore expect to easily choose a 

threshold value that is efficient at detecting transitions (T ≤ 85 photons) but have less than 1% false 

positives (T > 39.5 photons).  Similarly, for the case of 40 fluorophores contained in the Gaussian spot 

(each with peak intensity = 250 photons) 39.5 < T < 42.5. 

 Of course, detected false positives found with the spot detection algorithm will not necessarily 

result in equal numbers of additional spots plotted in the final super-resolution image since frame 

averaging will occur (if possible) before the Gaussian fitting step, and the resulting Gaussian fit must 

pass the rejection criteria (width, ellipticity, intensity, etc.) before a spot is plotted. 

Weighted two-dimensional, elliptical Gaussian fits using least-squares estimators and Levenberg-

Marquardt fitting.  The noise is governed by (1) the dark noise due to the camera in the pre-event 

image, (2) the shot noise in the pre-event image, (3) the shot noise in the post-event image, (4) the dark 

noise in the post-event image, and (5) intrinsic fluctuations in the amount of fluorescence from the 

fluorophores themselves.  Because one frame is subtracted from another, the standard deviations of the 

10

 



individual pixel intensities add in quadrature to give the total pixel noise of the resulting subtracted 

image 6.  The total noise associated with a single pixel in the final subtracted image (difference of 

frames k and [k + 1], or in the case of frame averaging, the difference of the average of frames  

[k – NB + 1] through k and the average of frames [k + 1] through [k + NA]) can be estimated by 

  (S8) 

where σA,shot is the shot noise associated with the pixel in the frames after a photobleaching event, 

σA,dark is the associated dark noise in the frames after photobleaching, and FA is the number of frames 

after the photobleaching event that are averaged.  By replacing the A with B in these terms, the 

corresponding values are represented for the frames before photobleaching.  In our software, we 

estimate σA,shot as the square root of the pixel intensity (after subtracting the camera baseline count) of 

the frame-averaged image.  σA,dark is estimated by selecting a portion of the image in which there are no 

fluorophores present and finding the standard deviation of the pixel intensities.  σA,dark is assumed to be 

equal to σB,dark.  If the electron-multiplying gain (EM gain) is used on an EMCCD camera, σ is 

multiplied by sqrt(2). 

The Gaussian fit is done by fitting all pixels within a given radius of the brightest pixel of the spot 

using Levenberg-Marquardt fitting (using the GNU Scientific Library).  For simulated fluorescent spot 

data with a spot width of 3 pixels and 700 counts peak intensity on a flat background (with added 

noise), the spot fitting accuracy did not increase significantly past a fitting radius of 3 pixels.  For fitting 

the real data, we used a fitting radius of four pixels for the Gaussian fitting.  The individual pixels are 

weighted according to the estimated noise associated with each pixel.  Using a weighted Gaussian fit 

reduced fit error by about 10% for the simulated single spots on dark, uniform backgrounds.  It was 

therefore concluded that the improvement in fitting accuracy would be improved by at least 10% for a 

non-uniform background.  The fitting accuracy is reported as the error reported by the fitting program 

using the covariance matrix of the best fit parameters.  For simulated spots on dark backgrounds, the 
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errors were found to be very near the fitting accuracy predicted by Thompson et al. for single spots on 

flat backgrounds 1.  However, we do not estimate the error using the Thompson et al. equation but, 

rather, use the error reported by the fitting program, since the Thompson et al. error equation is derived 

by assuming a flat background with Gaussian noise.  Using the error reported using the fitting program 

gives the added benefit that we do not have to know the counts-to-photons conversion factor, which is 

required by the Thompson et al. equation, in order to calculate the localization error.  

Gaussian fitting using maximum likelihood estimators and Fisher score fitting.  As an alternative to 

fitting with least-squares estimators and Levenberg-Marquardt fitting using GSL, we later wrote our 

own fitting algorithm based on maximum-likelihood estimators and the Fisher scoring method 7, 8.  The 

intensity value of a single pixel with indices (i, j) is the intensity of the two-dimensional Gaussian 

function integrated over the area of the pixel.  This was expressed by 

 

  

 (S9) 

where θ is the vector of parameters 

 ; (S10) 

and A is the peak intensity, (x0, y0) is the center of the Gaussian function, σ relates the width of the 

Gaussian function, and  

  (S11a) 

 . (S11b) 

The fitting error estimates were expressed using the Cramér-Rao lower bound (CRLB), which gives 

the lower bound of the variance of any unbiased parameter estimator 7, 8.  The CRLB variances of the 

individual parameter estimates are the corresponding diagonal elements of the inverse Fisher 
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information matrix 7.  For normally distributed observations (recorded pixel intensities), the elements of 

the Fisher information matrix are given by 

  (S12) 

where N is the total number of pixels used in the Gaussian fitting, gn(θ) are the expectation values of the 

pixels with varying indice (i, j), and Δgn
2 is the estimated variance of the pixel (see eq. [S1]).  We note 

that although photon detection is a Poissonian process, because we are averaging frames, subtracting 

frames, including camera dark noise (readout noise), and multiplying by factors according to the EM 

gain setting in the camera, the noise associated with a given pixel is no longer Poissonian, which is why 

we have elected to use the normally-distributed Fisher information matrix.  In form, however, the 

calculations of the Fisher information matrices for the two cases are nearly identical. 

 The fitting algorithm has the following form: 

1. Starting guess parameters are chosen based on the pixel with maximum intensity in order to 

guess A (where A = max. intensity – min. intensity), x0, and y0.  σ is initially guessed to be 1.3 

pixels.   

2. In the Fisher scoring iterative fitting procedure, the iteration step of the fit parameter vector is 

given by 7 

  (S13) 

where  is the inverse Fisher information matrix for parameter estimate vector θ and sθ is the 

Fisher score, the kth element of which is given by 

Fθ
−1

7 

  (S14) 

where  are the observed pixel values.  wn ΔθFS  is reduced in magnitude if it will result in one or 

more of the parameters becoming negative.   

3. If the magnitude of the step is less than the chosen tolerance (0.0001), then the algorithm has 
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reached convergence.   

4. The parameters are then updated to θc =θ +ΔθFS .    

5. If convergence was not reached and the maximum allowed number of iterations was not reached, 

then return to step 2. 

We tested the accuracy and reported fitting error of the fitting algorithm as implemented in the 

gSHRImP analysis software under two types of cases using simulated data.   

In the first case, a fluorophore was simulated to blink on and off with varying levels of background.  

The expected amount of background was chosen to be the same for each pixel, making a flat (before 

noise was added) background.  The fluorophore was repeatedly turned on and off, one transition per 

frame, and the situation was made ideal by generating the data such that transitions occurred in between 

frames (i.e., the expected fluorescence in a given frame was either 0% or 100% of expectation, nothing 

in between).  The fluorophore was positioned at the center of a pixel [where localization accuracy is 

expected to be poorest—see 9] in the center of a 21x21 pixels2 frame.  The peak intensity, A, of the 

fluorophore was chosen to be 500 photons, and the width value, σ, was chosen to be 1.3 pixels.  1001 

frames were simulated.  The background value was chosen to vary between 0 and 20000 photons.  The 

standard deviation of the x0 estimates matched well with the algorithm’s reported CRLB estimates of 

the error, until the background approached approximately 14000 photons.  Unfortunately, it was noticed 

that the spot detection algorithm seemed to start to fail significantly near a background of only 7500 

photons, detecting too many spots (500 photobleaching events and 500 photoactivation events are the 

expected values), which also resulted in fewer good spot localizations.  Improving the spot detection 

algorithm will be an ongoing area of research. Finally, we note that we also calculated what the 

Thompson et al. estimated error 1 would be for the given background values and found, similar to 8, that 

the Thompson equation uniformly estimated a lower error compared to the CRLB error estimate.  See 

Table S6 for the first case’s results.   

In the second case, we were interested in the effect of a non-uniform background.  We proceeded in 
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the same way as in the first case, but we fixed the background at 100 photons per pixel and added a 

second fluorophore that was shifted 0.25 pixels along the x axis, relative to the first fluorophore.  

Shifting was done in an effort to see whether the estimated position of the first fluorophore could be 

biased in the direction of the second fluorophore.  This second fluorophore was not allowed to blink, 

and its peak intensity was varied between 0 and 50000 fluorophores.  In this case, the spot detection 

algorithm performed quite well for all peak intensity values of the second fluorophore tested.  The 

estimated errors calculated using the CRLBs also corresponded quite well with the actual standard 

deviations of the x0 estimates from the center of the pixel.  There was no apparent biased shifting of the 

x0 estimates in the direction of the second fluorophore.  We also note, if the peak intensity of the second 

fluorophore is divided by 500 to give a number for simulated nearby fluorophores, the error associated 

with localizing the first fluorophore showed the expected increase with respect to the square root of the 

number of nearby fluorophores (graph not shown).  See Table S7 for numerical results. 

Estimation of the effect of nearby fluorophores.  As a simple way to get a sense of the effect of 

added background fluorescence due to nearby fluorophores, we can temporarily assume that the 

background is flat and make use of the results of Thompson et al. for estimating the localization  

error 1, 2, 

  (S15) 

where σi is the estimated localization error along the x or y direction; s is half the spot width along the 

given direction; a is the length of the pixel; N is the number of photons collected from the fluorophore 

in a single frame; and b is the background noise per pixel, in terms of photons.  Let us suppose that we 

have m fluorophores distributed randomly in an area A = 4s2, which is roughly the size of the area of a 

diffraction-limited spot, and each fluorophore emits N fluorophores per movie frame.  Let us further 

assume that there are enough fluorophores to make the fluorescence intensity roughly constant within 

the area A, and the background photon counts due to dark currents, etc., are negligible compared to the 

photons collected from the fluorophores.  In this case, assuming the noise associated with detecting 
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photons is Poissonian, b is approximately  

  (S16) 

Now let us suppose that a single fluorophore photobleaches in the transition from one frame to the 

next.  What is the estimated accuracy that can be achieved if we apply gSHRImP and do no frame 

averaging?  The number of fluorophores left after the photobleaching event that will contribute to the 

background fluorescence is now (m – 1).  However, the shot noise due to the background fluorophores 

doubles since the spot image we fit to a Gaussian is actually the difference of two frames, the 

background noise in both frames should be equivalent, and the background noise due to each frame adds 

in quadrature (see Equation [S1]).  Using our expression for b, the localization error can then be 

estimated as 

  (S17) 

Thus, if m = 10, s = 125 nm, a = 100 nm, and N = 10,000, then σi = 13 nm.  It should be noted that in 

Equation (S4), the last term in the square root dominates even for small values of m (i.e., m > 1), so the 

localization error can be expected to increase as the square root of (m - 1).  It should also be noted that 

this equation does not account for fluctuations in N from individual fluorophores, which will further 

increase the localization error.  Of course, localization accuracies can be improved if frames can be 

averaged (see Equation [S1]).  If F is the number of frames that can be averaged before and after the 

photobleaching event, then Equation (S4) decreases to  

  (S18) 

For theoretical localization accuracies for other values of nearby spots and frames averaged, see Fig. S5. 

As an example of the density of fluorophores that can be used and yet still find acceptable 

localizations of spots, we consider the super-resolution images produced by imaging the photobleaching 

of in vitro microtubules labeled with TMR.  If the number of fluorophores localized is plotted as a 
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function of frame, we see that the number starts out low, increases to a peak, and then steadily decreases 

(see Fig. S1a).  The starting, low number of spot localizations can be explained by assuming that the 

microtubules are overly labeled with fluorophores.  As the fluorophores photobleach, the density of 

active fluorophores decreases, and the ability to localize spots increases until a best fluorophore density 

is reached.  The fluorophores then continue to photobleach so that the number of fluorophores localized 

per frame begins to decrease because the system is running out of available fluorophores.  By knowing 

the average fluorescence output per frame of a single fluorophore, the total number of fluorophores per 

length of microtubule can be estimated.  In Fig. S1a, the maximum fluorophores-localized-per-frame 

occurs at a fluorophore density of one fluorophore per 14 nm of length of microtubule. 

Fluorophore density limits based on photobleaching and blinking rates.  Of course, even if the 

potential localization error is acceptable for a given high density of background fluorophores based 

simply on flourophore emission intensities, the dynamics of the photobleaching and blinking also affect 

the maximum possible density.  That is, if the fluorophores near-simultaneously photobleach, blink, etc., 

and they are spatially close, then the fluorophores cannot be localized via gSHRImP, even if their 

brightness is otherwise sufficient to localize fluorophores to good accuracy. 

To get a sense of how the photobleaching rate affects the maximum useful fluorophore density, 

consider the following.  Assume that we have N fluorophores within a radius R where R is the minimum 

distance between photobleaching events and Δt  is the minimum time required between photobleaching 

events (Δ  will be dependent on the frame acquisition time and the required number of photons for 

achieving the desired localization accuracy).  Further assume that at least 90% of the time, we want the 

time between subsequent photobleaching events to be ≥ 

t

Δt .  Let τ pb  be the photobleaching lifetime of 

the fluorophore.  Then, the probability that an individual fluorophore will photobleach within a time 

interval  is given by Δt

  (S19) 

The probability that none of N fluorophores photobleach within Δt  is then given by a binomial 
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distribution 

  (S20) 

The probability that only one photobleaches in Δt  is 

  (S21) 

The probability that only one photobleaches in a frame given that at least one photobleached in the 

frame is simply 

 . (S22) 

 To extend the arguments to fluorophores that both photobleach and blink is straightforward.  In 

this case, τ pb  is replaced by the lifetime associated with transitioning to a permanently photobleached 

state or a temporarily inactivated state, 

  (S23) 

where  is the photobleaching rate and  is the rate of transitioning to the temporarily inactive state.  

The probability 

kpb kpi

λN  that an individual fluorophore photobleaches or temporarily inactivates within Δt  is 

then calculated following Eq. S19.  Assume further that there are M fluorophores in the temporary 

inactive state that can transition to the fluorescing state at a rate kM =1/ τ pa .  The joint probability that 

neither (1) a fluorescing fluorophore photobleaches or transitions to a temporary inactive state nor (2) a 

fluorophore transitions from a temporary inactive state to a fluorescing state is given by the product 

  (S24) 

The probability that only one fluorophore transitions is 

  (S25) 

The probability that only one fluorophore out of M + N fluorophores transitions during  can then be 
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calculated using Eq. S22.  Similar expressions can be derived for the case of diffusion-based and 

transient labeling (as in PAINT), but since the rates are easily controlled empirically by changing 

fluorophore concentration in solution, expressions are not derived here. 

 We wished to validate the above equations using simulated fluorophore transitions.  For  

 s, Δt = 0.1 τ pb =∞ s, τ pi  = 10 s, and τ pa  = 1 s, M = 2, and N = 18, 84.6% of the frames that show 

transitions are expected to only show one transition.  This was corroborated with a Monte Carlo 

fluorophore simulation in which 20 fluorophores started in the actively fluorescing state and were 

allowed to evolve for 10000 frames (0.1 s per frame).  In this case, the percent of frames with transitions 

that showed only one transition was 84.5%. 

Plotting super-resolution images.  Although we developed software for representing the super-

resolution data in several ways, unless otherwise specified, the super-resolution images in this article 

were plotted in the following manner.  Individual spot fits were plotted as two-dimensional Gaussian 

functions, integrated over the area of the plot pixel (see eq. [S9]).  The length of the side of a pixel in the 

super-resolution image was usually chosen to be 10 nm (all figures in this article used 10 nm).  The 

center of the Gaussian was given by the fit parameters (x0, y0).  The width of the Gaussian, σ (see eq. 

[S9]), was the average of the estimated errors (given by the Cramér-Rao lower bound [CRLB]) for the 

x0 and y0 estimates.  The Gaussian was normalized to a volume-under-the-curve equal to 1000.  To 

speed up plotting, the Gaussians were only plotted within a square with sides equal to 8σ and centered 

on the pixel containing (x0, y0).  For positions > 4σ from the center of the Gaussian, the values of the 

Gaussian function were considered negligible. 
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SUPPLEMENTARY TABLES 

Table S1.  Algorithm parameters and fitting results for data presented in Figure 2c. 
 
Detection parameters and criteria 

 Image dilation iterations  2 

 Spot detection integration radius  3 pixels 

 Threshold (average within integration radius)  29 photons 

Detection results 

  Photobleaching events  22491 

  Photoactivation events  21080 
Fitting parameters 

 Maximum allowed error  0.5 pixels 

 Minimum σ  1 pixel 

 Maximum σ  2 pixels 

  Maximum A  500 photons 

Fitting results (non‐rejected spot fits) 

  Photobleaching events  6530 

  Photoactivation events  6618 
 
 
 
Table S2.  Algorithm parameters and fitting results for data presented in Figure 3b. 
 
Detection parameters and criteria 

 Image dilation iterations  2 

 Spot detection integration radius  3 pixels 

 Threshold (average within integration radius)  67 photons 

Detection results 

  Photobleaching events  54835 

  Photoactivation events  49752 
Fitting parameters 

 Maximum allowed error  0.5 pixels 

 Minimum σ  1 pixel 

 Maximum σ  2 pixels 

  Maximum A  1000 photons 

Fitting results (non‐rejected spot fits) 

  Photobleaching events  22262 

  Photoactivation events  22137 
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Table S3.  Algorithm parameters and fitting results for data presented in Figure 4b. 
 
Detection parameters and criteria 

 Image dilation iterations  2 

 Spot detection integration radius  3 pixels 

 Threshold (average within integration radius)  5 photons 

Detection results 

  Photobleaching events  4518 

  Photoactivation events  4315 
Fitting parameters 

 Maximum allowed error  0.5 pixels 

 Minimum σ  1 pixel 

 Maximum σ  1.8 pixels 

  Maximum A  150 photons 

Fitting results (non‐rejected spot fits) 

  Photobleaching events  1104 

  Photoactivation events  1210 
 
 
 
Table S4.  Algorithm parameters and fitting results for data presented in Figure 4e. 
 
Detection parameters and criteria 

 Image dilation iterations  2 

 Spot detection integration radius  3 pixels 

 Threshold (average within integration radius)  84 photons 

Detection results 

  Photobleaching events  14771 

  Photoactivation events  14262 
Fitting parameters 

 Maximum allowed error  0.5 pixels 

 Minimum σ  1 pixel 

 Maximum σ  2 pixels 

  Maximum A  1200 photons 

Fitting results (non‐rejected spot fits) 

  Photobleaching events  10519 

  Photoactivation events  10292 
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Table S5.  Algorithm parameters and fitting results for data presented in Figure 5b. 
 
Detection parameters and criteria 

 Image dilation iterations  2 

 Spot detection integration radius  3 pixels 

 Threshold (average within integration radius)  7 photons 

Detection results 

  Photobleaching events  2435887 

  Photoactivation events  2417237 
Fitting parameters 

 Maximum allowed error  0.5 pixels 

 Minimum σ  0.8 pixel 

 Maximum σ  2 pixels 

  Maximum A  100 photons 

Fitting results (non‐rejected spot fits) 

  Photobleaching events  215467 

  Photoactivation events  221136 
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Table S6.  Results of fluorophore localization using maximum-likelihood-based two-dimensional 
Gaussian fitter for a simulated, blinking fluorophore on a varying, uniform background.  The 
fluorophore was simulated as a Gaussian function with peak intensity = 500 photons. 
 
Detection parameters and criteria           
  Image dilation iterations  2         
  Spot detection integration radius  3 pixels         
  Detection threshold value  87 photons         
Fitting criteria             
  Maximum allowed error  0.5 pixels         
  Minimum σ    1 pixel         
  Maximum σ  2 pixels         

               

Background 
Detected 

photobleaching 
events 

Detected 
photoactivation 

events 

Well‐fit 
photobleaching 

events 

Well‐fit 
photoactivation 

events 

Observed 
σx0 

Average 
of CRLB 
error 

estimates 

Estimated 
Thompson 
et al. error 

0  500  500  499  499  0.037  0.019  0.018 

1  500  500  500  500  0.020  0.019  0.018 

10  500  500  500  500  0.023  0.022  0.019 

25  500  500  500  500  0.025  0.024  0.020 

40  500  500  500  500  0.027  0.026  0.021 

50  500  500  500  500  0.028  0.028  0.021 

60  500  500  500  500  0.030  0.029  0.022 

75  501  500  499  500  0.029  0.030  0.023 

100  500  500  500  500  0.032  0.033  0.024 

500  501  501  499  499  0.058  0.058  0.040 

1000  502  501  498  499  0.080  0.078  0.054 

5000  508  507  493  493  0.170  0.168  0.114 

7500  533  536  467  468  0.211  0.207  0.139 

10000  590  579  431  430  0.252  0.240  0.161 

12500  625  660  409  388  0.289  0.263  0.179 

14000  694  717  367  363  0.349  0.274  0.190 

15000  722  765  350  338  0.331  0.283  0.196 

16000  749  759  350  354  0.676  0.298  0.203 

17500  852  860  294  323  0.624  0.301  0.212 

20000  966  915  289  294  0.856  0.324  0.226 
 

23

 



 
Table S7.  Results of fluorophore localization using maximum-likelihood-based two-dimensional 

Gaussian fitter for a simulated, blinking fluorophore on a uniform background and a nearby, non-

blinking fluorophore.  The simulated fluorophore was centered at (x0, y0) = (10.5, 10.5). 

Detection parameters and criteria           
  Image dilation iterations  2         
  Spot detection integration radius  3 pixels         
  Detection threshold value  87 photons         
Fitting criteria             
  Maximum allowed error  0.5 pixels         

 
Minimum 
sigma 

  1 pixel 
       

  Maximum sigma  2 pixels         

               

2nd  
fluorophore's 

peak 
intensity 

Detected 
photobleaching 

events 

Detected 
photoactivation 

events 

Well‐fit 
photobleaching 

events 

Well‐fit 
photoactivation 

events 
Average x0 

x0 
standard 
deviation 

Average of 
CRLB error 
estimates 

0  501  500  499  500  10.500  0.032  0.033 

500  500  501  500  499  10.504  0.043  0.044 

1000  503  501  497  499  10.503  0.054  0.053 

5000  501  501  499  499  10.500  0.099  0.095 

10000  506  505  494  495  10.495  0.131  0.130 

20000  507  506  488  490  10.499  0.199  0.180 

50000  506  505  405  410  10.507  0.316  0.274 
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SUPPLEMENTARY FIGURES 

 

 

Figure S1.  Additional information for Fig. 2d.  (a) Spots localized per unit time increases as the 

microtubules photobleach to an optimal labeling density (in this case, one active fluorophore per 14 nm 

length of microtubule) and then decreases as the system is depleted of active fluorophores.  A small 

discontinuity in the frame intensity occurs near 150 s due to an interruption in data acquisition.  Bin 

width = 20 frames = 4 s.  (b) Distribution of per-spot localization errors for spots plotted in a final 

super-resolution image.  Bin width = 2.5 nm. 
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Figure S2.  (a) Tetramethylrhodamine-labeled axonemes on glass and imaged using epifluorescence.  

(b) gSHRImP image. Scale bar = 1 μm.  (c) Axoneme widths in normal and gSHRImP images.  

Segments of axonemes from (a) and (b) were fit to straight lines, and the distribution of fluorescence 

perpendicular to the long axes of the axonemes was plotted to find the apparent width.  11 segments, 

each near 5 μm in length, were fit this way to produce these plots. 

 

26

 



a b

 

Figure S3.  Lamda DNA on glass and labeled diffusively with SYTO.  (a) Average of frames of movie.  

(b) Result of gSHRImP analysis.  In these images, drift correction was not used.  Scale bar = 1 μm. 
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Figure S4.  Super-resolution imaging of DNA in a HEK cell.  DNA was labeled using a dilute solution 

of SYTO 16 dye.  (a) Image sequence with single frames selected at 199-frame intervals.  (b) Average 

of all fluorescence imaging frames (green) merged with a brightfield image of the cell showing the 

outline of the cell (blue).  (c) gSHRImP image.  Average spot localization error was 24 nm.  (d) 

Zoomed-in portion of part (c).  The gSHRImP image was constructed from 1000 image frames, 0.2 s per 

frame.  Scale bar = 1 μm. 
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Figure S5.  Equation (S5) estimates the localization error that can be achieved when there are several 

fluorophores crowded into a diffraction-limited area.  The plot shows the predicted accuracy for s = 125 

nm, a = 100 nm, and N = 10,000 photons.  Increasing frame averaging, where n is the number of frames 

averaged before and after a photobleaching event occurs, allows for smaller localization errors. 
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