TESTING QUANTUM MECHANICS TOWARDS THE LEVEL OF EVERYDAY LIFE: RECENT PROGRESS AND CURRENT PROSPECTS

Anthony J. Leggett

Department of Physics University of Illinois at Urbana-Champaign USA

MESO/MACROSCOPIC TESTS OF QM: MOTIVATION

At microlevel: (a) $|\uparrow\rangle + |\downarrow\rangle$ quantum superposition \neq (b) $|\uparrow\rangle$ OR $|\downarrow\rangle$ classical mixture how do we know? Interference At macrolevel: (a) \swarrow + \bigotimes quantum superposition OR (b) \bigotimes OR \bigotimes macrorealism

A: Decoherence DOES NOT reduce (a) to (b)!

Can we tell whether (a) or (b) is correct?

Yes, if and only if they give different experimental predictions. But if decoherence → no interference, then predictions of (a) and (b) identical.

```
⇒ must look for QIMDS
quantum interference of macroscopically distinct states
What is "macroscopically distinct"?
```

(a) "extensive difference" Λ

(b) "disconnectivity" D

~large number of particles behave differently in two branches Initial aim of program: interpret raw data in terms of QM, test (a) vs (b).

WHY HAS (MUCH OF) THE QUANTUM MEASUREMENT LITERATURE SEVERELY OVERESTIMATED DECOHERENCE?

("electron-on-Sirius" argument: $\Delta \epsilon \sim a^{-N} \sim exp - N \leftarrow \sim 10^{23}$

 \Rightarrow Just about any perturbation $\gg \Delta \epsilon \Rightarrow$ decoherence)

- 1. Matrix elements of S-E interaction couple only a very restricted set of levels of S.
- 2. "Adiabatic" ("false") decoherence: Ex.: spin-boson model

 $\hat{H} = \hat{H}_{s} + \hat{H}_{E} + \hat{H}_{S-E}$ $\hat{H}_{r} = \Delta \sigma_{r}$ \hat{H}_{E} = set of SHO's with lower frequency cutoff $\omega_{\min} \gg \Delta$ $\hat{H}_{S-E} = \hat{\sigma}_z \sum_{\alpha} C \hat{x}_{\alpha} \leftarrow \text{oscillator coords.}$ $\Psi_{un}(t=0) = |+\rangle |\chi_+\rangle \leftarrow \text{displaced state of oscillation}$ $\hat{\rho}_s(t=0) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (trivially) 1 $\Psi_{\rm un}(t \sim \hbar / \Delta_{\rm un}) \cong \frac{1}{\sqrt{2}}(|+>|\chi_+>+|->|\chi_->),$ FC factor $\langle \chi_+ | \chi_- \rangle = \exp - F \cong 0$ $\Rightarrow \qquad \hat{\rho}_s(t \sim \hbar / \Delta_{nn}) \cong \begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix}$

decohered?? (cf. neutron interferometer)

The Search for QIMDS

Note: (a.) Beam does not have to be monochromated $f(\upsilon) = A\upsilon^3 \exp(-(\upsilon - \upsilon_o)^2/\upsilon_m^2)$ ($\upsilon_o \sim 1.8 \upsilon_m$)

Why doesn't this destroy interference?

^{*}Arndt et al., Nature *401*, 680 (1999); Nairz et al., Am. J. Phys. *71*, 319 (2003).

The Search for QIMDS (cont.)

2. <u>Magnetic biomolecules*</u>

Raw data: $\chi(\omega)$ and noise spectrum above ~200 mK, featureless below ~300 mK, sharp peak at ~ 1 MHz (ω_{res})

$$\omega_{res}^2 \cong \omega_o^2 + M^2 H^2$$

$$\ell n \, \omega_o \sim a - bN \quad \leftarrow \text{ no. of spins, exptly.}$$

Nb: data is on physical ensemble, i.e., only total magnetization measured.

*S. Gider et al., Science 268, 77 (1995).

The Search for QIMDS (cont.)

3. Quantum-optical systems*

 $\sim 10^{12}$ Cs atoms

for each sample separately, and also for total

$$\begin{bmatrix} J_{x}, J_{y} \end{bmatrix} = iJ_{z}$$

$$\Rightarrow \quad \left\langle \delta J_{x1} \delta J_{y1} \right\rangle \ge |J_{z1}|$$

$$\left\langle \delta J_{x2} \delta J_{y2} \right\rangle \ge |J_{z2}|$$

$$\left\langle \delta J_{x tot} \delta J_{y tot} \right\rangle \ge |J_{z tot}|$$

so, if set up a situation s.t.

$$\boldsymbol{J}_{z1} = -\boldsymbol{J}_{z2}$$

must have

$$\left\langle \delta J_{x1} \delta J_{y1} \right\rangle > 0$$
$$\left\langle \delta J_{x2} \delta J_{y2} \right\rangle > 0$$

but may have

$$\left< \delta J_{xtot} \delta J_{ytot} \right> = 0$$

(anal. of EPR)

*B. Julsgaard et al., Nature 41, 400 (2001); E. Polzik, Physics World 15, 33 (2002)

Interpretation of idealized expt. of this type:

(QM theory
$$\Rightarrow$$
) $\langle \delta J_{x1} \delta J_{y1} \rangle \ge |J_{z1}| \sim N$
 $\Rightarrow |\delta J_{x1}| \ge N^{1/2}$

<u>But,</u>

$$(\exp t \Rightarrow) \left\langle \delta J_{xtot} \delta J_{ytot} \right\rangle \cong 0 \qquad (\#)$$
$$\Rightarrow \left| \delta J_{xtot} \right| \sim 0$$
$$\Rightarrow \delta J_{x1} \quad \text{exactly anticorrelated with } \delta J_{x2}$$

 $\Rightarrow \text{state is either superposition or mixture of } |n,-n>$ but mixture will not give (#) $\Rightarrow \text{ state must be of form}$ $u = J_{x1}$ J_{x2}

$$\sum_{n} c_{n} \mid n, -n >$$

with appreciable weight for $n \leq N^{1/2}$. \Rightarrow high disconnectivity Note:

(a) QM used essentially in argument

(b)
$$D \sim N^{1/2}$$
 not $\sim N$.
(prob. generic to this kind of expt.)

The Search for QIMDS (cont.)

4. Superconducting devices

(\uparrow : not all devices which are of interest for quantum computing are of interest for QIMDS)

Advantages:

- classical dynamics of macrovariable v. well understood
- intrinsic dissipation (can be made) v. low
- well developed technology
- (non-) scaling of S (action) with D.

"Macroscopic variable" is trapped flux Φ [or circulating current I]

PHYSICS OF SUPERCONDUCTIVITY

(Ex: $2p + 2n + 2c = {}^{4}He$ atom)

⇒ can undergo Bose condensation

Pairing of electrons:

"di-electronic molecules"

Cooper Pairs

In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

 \Rightarrow must all do exactly the same thing at the same time (also in nonequilibrium situation)

SUPERCONDUCTING RING IN EXTERNAL MAGNETIC FLUX:

Quantization condition for "particle" of charge 2e (Cooper pair):

 $E \propto K^2$

"flux quantum" h/2e

A. $\Phi = 0$: groundstate unique (n = 0)

 \Rightarrow all pairs at rest.

B. $\Phi = 1/2 \Phi_0$: groundstate doubly degenerate

(n = 0 or n = 1)

Either all pairs rotate clockwise Or all pairs rotate anticlockwise

Note: state with 50% and 50%

strongly forbidden by energy considerations

Josephson circuits

(b) real-time oscillations (like NH₃)

between \circlearrowleft and \circlearrowright

(Saclay 2002, Delft 2003) $(Q_{\phi} \sim 50-350)$

FP 12

From I. Chiorescu, Y. Nakamura, C.J.P. Harmans, and J. E. Mooij, Science, 299, 1869 (2003)

WHAT IS THE DISCONNECTIVITY "D" ("SCHRÖDINGER'S-CATTINESS") OF THE STATES OBSERVED IN QIMDS EXPERIMENTS?

- i.e., how many "microscopic" entities are "behaving differently" in the two branches of the superposition?
- Fullerene (etc.) diffraction experiments: straightforward, number of "elementary" particles in C_{60} (etc.) (~1200)
- Magnetic biomolecules: number of spins which reverse between the two branches (~5000)

matter of definition

Quantum-optical experiments

SQUIDS

e.g. SQUIDS (SUNY experiment):

(b) how many single electrons do we need to displace in momentum space to get from Ψ_{\frown} to Ψ_{\odot} ? (Korsbakken et al., preprint, Nov. 08)

 $\Rightarrow D \sim N(\upsilon_s / \upsilon_F) \sim 10^3 - 10^4 \quad \stackrel{\texttt{A: intuitively, severe underestimate in "BEC" limit (e.g. Fermi alkali gas)}$

(c) macroscopic eigenvalue of 2-particle density matrix (corresponding to (fairly) orthogonal states in 2 branches):

 $\Rightarrow D \sim N(\Delta/\varepsilon_F) \sim 10^6 - 10^7$

<u>SYSTEM</u>	<u>"EXTENSIVE</u> <u>DIFFERENCE"</u>	DISCONNECTIVITY/ ENTANGLEMENT
Single e ⁻	1	1
Neutron in interferometer	$\sim 10^9$	1
QED cavity	~ 10	$\stackrel{<}{_\sim} 10$
Cooper-pair box	$\sim 10^5$	2
C ₆₀	~ 1100	~ 1100
Ferritin	~ 5000 (?)	~ 5000
Aarhus quantum- optics expt.	$\sim 10^6$ ($\propto \mathrm{N}^{1/2}$)	$\sim 10^{6}$
SUNY SQUID expt.	$\sim 10^9 - 10^{10}$ ($\propto N$)	(104–1010)
Smallest visible dust particle	~10 ¹⁹	(10 ³ -10 ¹⁵)
Cat	$\sim 10^{34}$	$\sim 10^{25}$

More possibilities for QIMDS:

(a) BEC's of ultracold alkali gases:

Bose-Einstein condensates

Ordinary GP state:

$$\Psi_{N} = \left(a\psi_{L}(\boldsymbol{r}) + b\psi_{R}(\boldsymbol{r})\right)^{N}$$

"Schrödinger-cat" state (favored if interactions attractive):

$$\Psi_{N} = a(\psi_{L}(\boldsymbol{r}))^{N} + b(\psi_{R}(\boldsymbol{r}))^{N}$$

problems:

- (a) extremely sensitive to well asymmetry ΔE (energy stabilizing arg (a/b) $\sim t^N \sim \exp - NB/\hbar$) so ΔE needs to be exp'ly small in N single-particle tunnelling matrix element
- (b) detection: tomography unviable for N»1,
 ⇒ need to do time-sequence experiments (as in SQUIDS), but period v. sensitive e.g. to exact value of N

More possibilities for QIMDS (cont):

rms groundstate displacement

Actually:

In practice, $\Delta x \ll d$.

 Problem: simple harmonic oscillator! (One) solution: couple to strongly nonlinear microscopic system, e.g. trapped ion. (Wineland)

Can we test GRWP/Penrose dynamical reduction theories?

WHAT HAVE WE SEEN SO FAR?

 If we interpret raw data in QM terms, then can conclude we have a quantum superposition rather than a mixture of meso/macroscopically distinct states. However, "only 1 degree of freedom involved."

2. Do data exclude general hypothesis of macrorealism?

- NO
- 3. Do data exclude specific macrorealistic theories?
 e.g. GRWP ← Ghirardi, Rimini, Weber, Pearle

NO (fullerene diffraction: N not large enough, SQUIDS: no displacement of COM between branches)

Would MEMS experiments (if in agreement with QM) exclude GRWP?

 $\Rightarrow do not gain by going to larger \Delta x$ (and small Δx may not be enough to test GRWP)

HOW CONFIDENT ARE WE ABOUT (STANDARD QM'I) DECOHERENCE RATE?

Theory:

- (a) model environment by oscillator bath (may be questionable)
- (b) Eliminate environment by standard Feynman-Vernon type calculation (seems foolproof)

ARE WE SURE THIS IS RIGHT?

Tested (to an extent) in cavity QED: never tested (?) on MEMS.

Fairly urgent priority!

Where do we go from here?

- Larger values of Λ and/or D? (Diffraction of virus?)
- 2. Alternative Dfs. of "Measures" of Interest
 - More sophisticated forms of entanglement?*
 - Biological functionality (e.g. superpose states of rhodopsin?)
 - Other (e.g. GR)

* 3. Exclude Macrorealism

Suppose: Whenever observed, $Q = \pm 1$.

Q = +1 Q = -1

Df. of "MACROREALISTIC" Theory:

I. $Q(t) = \pm 1$ at (almost) $\forall t$,

whether or not observed.

"COMMON SENSE"?

- II. Noninvasive measurability
- III. Induction

Can test with existing SQUID Qubits!

$$K \equiv K(t_1 t_2 t_3 t_4) \equiv \left\langle Q(t_1) Q(t_2) \right\rangle_{\exp} + \left\langle Q(t_2) Q(t_3) \right\rangle_{\exp} + \left\langle Q(t_3) Q(t_4) \right\rangle_{\exp} - \left\langle Q(t_1) Q(t_4) \right\rangle_{\exp}$$

Take $t_2 - t_2 = t_3 - t_2 = t_4 - t_3 = \pi/4\Delta$ \leftarrow tunnelling frequency

Then,

- (a) Any macrorealistic theory: $K \le 2$
- (b) Quantum mechanics, ideal: K=2.8
- (c) Quantum mechanics, with all the K>2 (but <2.8) real-life complications:
- Thus: to extent analysis of (c) within quantum mechanics is reliable, can force nature to choose between macrorealism and quantum mechanics!

Possible outcomes:

- (1) Too much noise $\Rightarrow K_{QM} \le 2$
- (2) K>2 \Rightarrow macrorealism refuted
- (3) K<2:?!