Topological Quantum Computing in ($p+i p$) Fermi Superfluids:

Some Unorthodox Thoughts

A. J. Leggett Department of Physics University of Illinois at Urbana-Champaign (joint work with Yiruo Lin)

Leo Kadanoff Memorial Symposium University of Chicago, 22 October 2016

General principle of topological quantum computing (TQC): within relevant Hilbert space,

1. relevant quantum states indistinguishable by any "natural" operation $\left(\hat{H}_{\text {nat }} \propto \hat{1}\right)$
2. Can perform necessary unitary transformations by "unnatural" operations (which should be robust)

Proposal: in 2D $(p+i p)$ Fermi superfluids, perform TQC by braiding vortices containing Majorana fermions

2D $p+i p$ Fermi superfluids (thin slabs of ${ }^{3} \mathrm{HeA}, \mathrm{Sr}_{2} \mathrm{RuO}_{4}$, UC Fermi gases...): order parameter in uniform case has form (p near Fermi surface)

$$
\Delta(\boldsymbol{p})=\Delta_{o}\left(p_{x}+i p_{y}\right)
$$

Note: (a) in 2D, $|\Delta(p)|=$ const.
(b) breaks time-reversal symmetry
(c) Pauli principle \Rightarrow parallel spins, e.g. $\uparrow \uparrow \uparrow$

Textbook approach to fermionic excitations in superconductors (Fermi superfluid):
invoke spontaneous braking of $\mathrm{U}(1)$ symmetry $(\mathrm{SBU}(1) \mathrm{S})$:

$$
\Psi_{e v e n}=\sum_{N} C_{2 N} \Psi_{2 N} \quad \leftarrow \text { Not eigenstate of particle no. }
$$

then simplest fermionic excitation is quantum superposition of extra particle and extra hole (Bogoliubov quasiparticle) e.g. for uniform case,

$$
\alpha_{k}^{+}=u_{k} a_{k}^{+}+v_{k} a_{-k}
$$

In general case (nonuniform gap) creation operator of Bogoliubov quasiparticle is

$$
\alpha_{i}^{+}=\int d r \underset{\text { Extra particle }}{\substack{\uparrow \\ \text { Extra hole }}}
$$

with $(u(r), \mathrm{v}(r))$ solution of Bogoliubov-de Gennes equations $\left[H_{B d G}, \alpha_{i}^{+}\right]=E_{i} \alpha_{i}^{+}$i.e.
$\hat{H}_{B d G}\binom{u(r)}{v(r)} \equiv\left(\begin{array}{cc}\hat{H}_{o} & \Delta(r) \\ \lambda^{*}(r) & -\hat{H}_{o}^{*}\end{array}\right)\binom{u(r)}{v(r)}=E\binom{u(r)}{v(r)}$
Single-particle energy

Solution to BdG with properties
(1) $u(r), v(r)$ localized in space
(2) $E=0$
(3) $u(r)=u^{*}(r) \Rightarrow \gamma_{i}^{\uparrow} \equiv \gamma_{i} \quad$ (Majorana, 1937)

Because of (3), Majoranas undetectable by any local probe (condition (1)). Moreover, under braiding (robust procedure) form representation of braid group (condition (2)).

In ($p+i p$) superfluids, a (half-quantum) vortex/antivortex admits exactly one Majorana solution $\Rightarrow \mathrm{MF}$ solutions always come in pairs.

Proposal*:
(1) create vortex-antivortex pair [without Bog. qp/ No MF's with Bog. qp MF on each
(2) braid (permute) vortices and antivortices
(3) recombine, read off presence/absence of Bog. qp's.
should realize (Ising) TQC.
Simplest case: exchange of 2 vortices
Prediction for Berry phase φ_{B} (Ivanov):
for no MF's, $\varphi_{\mathrm{B}}=0$
 for $2 \mathrm{MF}^{\prime \prime} \mathrm{s}, \varphi_{\mathrm{B}}=\pi / 2$ i.e.

$$
\hat{U}_{\mathrm{exch}}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 2}
\end{array}\right)
$$

(note not usual fermionic π !)

Digression: what exactly is a Majorana fermion?

By definition, it is a solution of the BdG equations

$$
\left[H, \gamma_{i}^{\dagger}\right]=E \gamma_{i}^{\dagger} \quad \text { with } E=0
$$

But this has two possible interpretations when acting on the evenparity groundstate:
(a) γ_{i}^{\dagger} creates an extra Bogoliubov quasiparticle with zero energy
(b) γ_{i}^{\dagger} simply annihilates the groundstate ("pure annihilator") But in neither case can γ_{i}^{\dagger} be equal to γ_{i} ! To ensure this we must superpose (a) and (b) with equal weight, i.e.

A Majorana fermion is a quantum superposition of a zeroenergy fermion and a pure annihilator

The physically real object is the $E=0$ fermion, which is a quantum superposition of two Majoranas:

$$
\alpha^{+}=\gamma_{i}^{\dagger}+i \gamma_{2}^{\dagger} \quad \text { (always possible since MF's come in pairs) }
$$

If e.g. $\gamma_{1}^{\dagger}, \gamma_{2}^{\dagger}$ refer to 2 vortices in a ($p+i p$) superfluid, the zeroenergy fermion is strongly delocalized ("split")

(\Rightarrow teleportation? Controversial!)
(So far, in some sense well-known...)

A slight problem with the "standard" approach:

SBU(1)S IS A MYTH!

(The states of real systems are always either eigenstates of particle number \hat{N}, or incoherent mixtures thereof)

Suppose we start (say) in the even-no.-parity groundstate $|2 N, 0\rangle$. Then "textbook" prescription for Bogoliubov quasiparticle operator α_{k}^{+}gives

$$
\alpha_{k}^{+}\left|\Psi_{2 N}\right\rangle \equiv\left(u_{k} a_{k}^{+}+\mathrm{v}_{k} a_{-k}\right)=u_{k} \mid \underbrace{2 N+1, k\rangle+v_{k}|2 N-1, k\rangle}_{\uparrow}
$$

So, we need to write instead

$$
\alpha_{k}^{+}=u_{k} a_{k}^{+}+v_{k} a_{-k} \hat{C}^{\dagger} \leftarrow \text { Cooper-pair creation operator }
$$

Q: How come we (mostly*) got away with ignoring this for 50 years?
A: As long as Cooper pairs carry no interesting quantum numbers, doesn't matter! However, once they have nonzero COM, spin..., this becomes crucial and standard "mean-field" ideas may fail.

Examples:
(a) NMR in ${ }^{3} \mathrm{He}-\mathrm{B}$
(C. pairs have nonzero spin)
(b) Galilean invariance (C. pairs have nonzero COM momentum)

Now: in a $p+i p$ superfluid, C. pairs have "internal" angular momentum!

So: are standard mean-field ideas adequate for quantum-information purposes (in particular, TQC)?

Some Simple Consequences of Cooper Pair Angular Momentum

1. Why does a vortex in a $p+i p$ superfluid, but not in an s-wave one, carry Majoranas?

$$
\gamma_{0}^{\dagger}=u(r) \hat{\psi}^{\dagger}(r)+v(r) \hat{\psi}(r) \hat{C}
$$

$u(r), v(r)$ single-valued \Rightarrow characterized by angular momentum QNS $\ell_{u}, \ell_{v}=0, \pm 1, \pm 2 \ldots$
$u(r)=v^{*}(r) \Rightarrow \ell_{u}=-\ell_{v}$
Suppose "local" angular momentum of Cooper pair is $\ell_{c}^{(l o c)}$, then conservation of total angular momentum

$$
\Rightarrow \ell_{u}=\ell_{v}+\ell_{c}^{(l o c)} \Rightarrow \ell_{c}^{(l o c)}=2 \ell_{u}=\text { even. }
$$

ℓ_{c} has contribution from COM (vortex) and possibly intrinsic angular momentum.
In s-wave, $\ell_{\text {vort }}=(\pm) 1, \ell_{\text {int }}=0 \Rightarrow \ell_{c}^{\text {loc }}=$ odd \Rightarrow MF's cannot exist. In $p+i p, \quad \ell_{\text {vort }}=(\pm) 1, \ell_{\text {int }}=0 \Rightarrow \ell_{c}^{\text {loc }}=$ odd \Rightarrow MF's may exist. (need further argument to show that they do).
2. Exchange of two vortices with/without MF's:
recall: acc. Ivanov, relative Berry phase $=\pi / 2$ Consider encirclement of one by another

Theorem (YRL): In this situation, encirclement Berry phase $=2 \pi \bullet\langle L\rangle$

Recap: $\varphi_{B}^{(e n e)}=2 \pi\langle L\rangle$.

1. No MF's:
$\langle L\rangle=N_{c} \cdot \ell_{c}=$ integral
\Rightarrow encirclement phase $=2 n \pi=0 \bmod 2 \pi$
\Rightarrow exchange phase $=0$ (or π, but exclude on physical grounds)
2. MF's on vortices 1 and 2 (i.e. $E=0$ fermion "split" between 1 and 2). What is extra Berry phase? i.e. what is $\Delta\langle L\rangle$?
(a) "standard" approach:
\{ Angular momentum of M.F.'s themselves $\equiv 0 \quad$ (otherwise locally Eno change in Cooper pair state detectable!)
$\Rightarrow \Delta\langle L\rangle=0 \Rightarrow$ encirclement phase $=0 \Rightarrow$ exchange phase $=0$ or π (not adequate for TQC)
(b) Number-conserving approach:

One extra Cooper pair is added in conjunction with $v(r)$, i.e. exactly half the time. Hence
$\Delta\langle L\rangle=\frac{1}{2} \ell_{c}$ where ℓ_{c} is global C. pair angular momentum

But for 2 vortices (or an even number)

$$
\ell_{c, \text { vort }}=\text { even, } \ell_{\text {int }}= \pm 1
$$

$\Rightarrow \ell_{\mathrm{c}}$ odd \Rightarrow encirclement phase $=(2 n+1) \pi$
\Rightarrow Exchange phase is $\pi / 2$ (mod. π)

- the Ivanov result!

Yet... Ivanov's argument on exchange never invokes p-wave nature of OP!

Two \$64 questions beyond the mean-field scenarios
(1) Is the "extra" Cooper pair exactly the same as the preexisting ones? e.g.

add one up-spin Bogoliubov or quasiparticle:
everyone agrees $\Delta S_{\text {loc }} \cong 1$.
What about $\Delta N_{\text {loc }}$?
Mean-field answer: $\Delta N_{\text {loc }}=0$
but is " 0 " $1 / N_{\text {tot }}$ or $1 / N_{\text {trap }}$? (In latter case, may be inadequate for TQC)
(2) The BdG equations relate (the simplest) even-and oddnumber parity many-body states. i.e. if we have (e.g.) the even-parity and odd-parity groundstates, then

$$
\begin{gathered}
\Psi_{\text {odd }}=\alpha_{0}^{+} \Psi_{\text {even }} \\
\alpha_{0}^{+} \equiv \int\left\{u_{0}(r) \psi^{\dagger}(r)+v(r) \psi(r)\right\} d r
\end{gathered}
$$

$(u(r), v(r))$ solution of BdG equations.

Question: IS THE CONVERSE TRUE?

i.e. does the existence of a solution $\left(u_{0}, \mathrm{v}_{0}\right)$ to the BdG equations imply that there exist even- and odd-parity states connected by it?

