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TQT ‐ 1On the Bogoliubov-de Gennes equations.

Main claims of this talk:

1. For 50 years, almost all theoretical work on 
inhomogeneous Fermi Superfluids, including work on 
topological quantum technology in (p + ip) 
superconductors, has been based on the Bogoliubov-de 
Gennes (generalized mean-field) method.

2. Consideration of some simple examples shows that 
results obtained by this method (at least if applied 
naively) may be wrong.

3. This is because in the cases of interest the response of 
the Cooper pairs cannot be ignored.

4. The question most relevant to TQT relates to the Berry 
phase: here again consideration of a simple example 
strongly suggests that the response of the Cooper pairs 
cannot be ignored, so that results obtained by (naïve 
application of) the BdG equations may be qualitatively 
misleading.

5. If so, this could be a disaster for the whole program of 
TQT in (p + ip) Fermi superfluids.
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The Bogoliubov-de Gennes (generalized mean-field, “BdG”) method.

2
† ∙ †

, ′ 	 ′ † † ′ ′

† ≡ fermion creation operator(etc.) ,	

	 , ′ ∗ , ′
Mean-field approximation:

† † ′ † ′ † ⟹

† † ′ ′ † † ′ † ′ †

 MF Hamiltonian:

2
† ∙ †

	 ′ Δ , ′ 	 † 	 † ′ . .

Original Hamiltonian:

Δ , ′ ≡ , ′ ̂ ′ ̂

(+ Hartree + Fock terms)

operators
c‐number

← must 
eventually 

be chosen self-consistently
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is bilinear in , † ⟹ can be diagonalized by writing

†

Ε ̂
†

const.

where , are spinors (in ordinary spin space) satisfying 
the BdG equations

Δ , ′ Ε i

Δ i ∗ i Ε i

where ≡

In simple BCS case Δ , Δ , 

so reduces to

Δ
Δ∗ ∗
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Some notes on the BdG method:

1. The mean-field Hamiltonian is particle-nonconserving
(“spontaneous breaking of U(1) Symmetry”)

2. Relation phase of and is determined by phase 
of Δ . But global phase of Δ is determined by that 
of “order parameter” , which is physically 
meaningless

3. Hence all the physics is invariant under global phase 
transformation 

→ , → exp .	 .

4. If , 	is a solution of BdG equations with 
eigenvalues then ∗ , ∗ is a solution with 
eigenvalues 

5. Hence, by (3) with , we can as well choose the 
“negative-energy” solution to be ∗ , ∗

(⇒ possibility of Majorana solutions, 
∗ , 0)

6. The (solutions of the) BdG equations tell us the relation
between the (even-number-parity) groundstate and the 
simplest fermionic (add-points) energy eigenstates. They 
do not tell us anything directly about the GS (though cf. 
Stone & Chung, Phys. Rev. B 73, 014505 (2006).)
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example:

Consider an even-number-parity BCS superfluid at rst. (so 0)

Now create a single fermionic quasiparticle in state k:

For this, the appropriate BdG qp creation operator 	turns out to be

↑ ↓ , ≡ 1
∈

, ≡ 1
∈

≡ ∈ Δ
/

The total momentum f of the (odd-number-parity) many-body state 
created by is

+ ≡

so Δ ≡ -

Now consider the system as viewed from a frame of reference moving 
with velocity , so that the condensate COM velocity is . Since the 
pairing is now between states with wave vector k and / , 
intuition suggests (and explicit solution of the B&G equations 
confirms) that the form of is now

,↑ ↓ ← nb. not 
!

Thus the added momentum is

Δ ′

total 
momentum

standard textbook result
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Recap:   BdG Δ ′

However, by Galilean invariance, for any given condensate 
number N,

′ , ′ 1 .

⇒ Δ ′ ≡ Δ ′ .

And this result is independent of N (so involving “spontaneous 
breaking of U(1) symmetry” in GS doesn’t help!)

So: BdG⇒ Δ ′

GI→ Δ ′
Galilean 
invariance

What has gone wrong?

Solution: Conserve particle no.!
When condensate is at rest, correct expression for fermionic

correlation operator is

↑ ↓ ←creates ultra Cooper pair 

(with COM velocity O)

Because condensate at rest has no spin/momentum/spin current …, the 
addition of has no effect. However:
when condensate is moving

,↑ ,↓

⇒ Δ ′ /
=

In accordance with GI argument

← creates extra Cooper pair
(with  velocity v)
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Failure of BdG/MF: a slightly less trivial example

For a thin slab of (appropriately oriented) 3He-B, 
calculations based on BdG Equations predict a Majorana
fermion state on the surface. A calculation* starting from the 
fermionic MF Hamiltonian then predicts that in a 
longitudinal NMR experiment, appreciable spectral weight 
should appear above the Larmor frequency ≡ Β :

The problem: no dependence on strength of dipole coupling , 
(except for initial orientation)! But for =0, commutes with ⇒

	 	~	 , ,

⇒ 	~	 !
For nonzero gD,

	 	~ ⇒ result cannot be right for →
Yet – follows from analysis of MF Hamiltonian!

MORAL: WE CANNOT IGNORE THE COOPER PAIRS!

*M.A. Silaev, Phys. Rev. B 84, 144508 (2011)

B

Brf

→ L
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(Conjectured) further failure of MF/BdG approach

Imagine a many-body Hamiltonian (e.g. of a 
superconductor) which admits single Majorana fermion solutions at 
two widely separated points. These M.F.’s are “halves” of a single 

0 Dirac-Bogoliubov fermion state. Intuitively, by injecting an 
electron at 1 one projects on to this single state and hence gets an 
instantaneous response at 2. Semenoff and Sodano (2008) discuss this 
problem in detail and conclude that unless we allow for violation of 
fermion number parity, we must conclude that this situation allows 
instantaneous teleportation.

Does it? Each Majorana is correctly described, not as usually assumed by

∗ 			 ≡

but rather by

∗ 	

1 2

↑
M.F.

↑
M.F.

Cooper pair 
creation operator

But it is impossible to apply the “global” operator instantaneously! 
What the injection will actually do (inter alia) is to create, at 1, a 
quasihole–plus–extra–Cooper –pair at 1, and the time needed for a 
response to be felt at 2 is bounded below by L/c when C is the C. pair 
propagation velocity (usually ~vf).

L



TQT ‐ 9

z = ‐B z B(r) ≡ V(r)

V(r)=Vof(‐o)

o , range of f() /R but  1.

A TRIVIAL-LOOKING PROBLEM
INVOLVING THE BERRY PHASE

Consider a neutral s-wave 
Fermi superfluid in an 
annular geometry: single 
quantum of circulation 

vs = /2mR

( ).

•

pair radius

So effect on condensate o(BBo/)2≪ 1

Create Zeeman magnetic field trap:

Vs o

R
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GS of 2N+1-particle system presumably has
single Bogoliubov quasiparticle trapped in 
Zeeman trap.

Now, let’s move o adiabatically once around 
annulus:

Question:
What Berry phase is picked up?

Possible conjectures:
(a) 
(b) 0
(c) something else
(d) question ill-defined

Let’s do this problem by two different methods:
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Method 1 (BdG)

The phase of the superconducting condensate rotates through 2
as we go once around the annulus, so without loss of generality 
we may take

∆	 	 Δ exp
So BdG equations read:

∆
Δ

≡ 	
2

	 V

Cf: particle of spin ½ in trap centered at , with
field rotating around z-axis:

↑	
↓	

↑	
↓	

cos

Thus: ↑ ⟶ (“particle”)
↓ ⟶ (“hole”)

Now in the magnetic case it is a textbook result that Berry phase 
is

2 	 /2 ← “weight” of │↑> component

Our (superconducting) case corresponds to weight of | 1/2, 
i.e. to 2⁄ , so infer 

(BdG)

̂
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Method 2: Microscopic (N-conserving) argument

In presence of Zeeman trap, 2N+1-particle “ground” 
state with ≠ 0 is of general form

Ψ 	∑ ℓ ℓ Ψℓ ℓ ≡ ℓ ℓ↑ vℓ
∗

ℓ ℓ ↓ ℓ

Then easy to show that

≡ lm Ψ∗ 2π∑ ℓ ℓ
2.ℓ

( ℓ ≡ vℓ/ ℓ)

Conserves N!

Vs o

R

Ansatz:
2N-particle “ground” state for ℓ ≠ 0 is

2n = ( 	ℓ ℓ↑ ℓ ℓ )N/2 Ivac>

 ( ℓ ) N/2 Ivac>
Creates C. pair with any 
momentum ℓ

ℓ~ ℓ
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Recap: in particle-conserving calculation,

2 ℓ ℓ

ℓ
But recall: In particle-conserving calculation, a Bogoliubov qp with 
wave vector k (ℓ), even in a moving (rotating) 

condensate, adds (angular) 
momentum 	 ℓ . Hence 
difference Δ in angular 

momentum between even-parity and odd-parity groundstate is just 
∑ ℓ ℓℓ .

⟹ 2π ∙ Δ

The $64K argument: what is ∆ ?

Consider situation as viewed from frame of moving condensate: then 
condensate is at rest, Zeeman trap is moving at speed .

2⁄ . But since the weights of particle and hole is then added 
qp or equal, no extra particle density is associated with the trap, 
hence no Δ . However, there is a probability of exactly ½ of the hole 
component and hence of an extra Cooper pair relative to the even-
parity groundstate. When we go back to the last frame, this cancels 
half the effect of the added single particle and gives Δ 1/2.

Hence, apparently,
(microscopic particle-conserving calculation)

⟹ particle-conserving calculation agrees with (naïve) BdG
approach
↑ : Is there a first-order (in ) connection to Δ in the moving frame?

i.e. involving † †
ℓ

ℓ


