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TQT ‐ 1On the Bogoliubov-de Gennes equations.

Main claims of this talk:

1. For 50 years, almost all theoretical work on 
inhomogeneous Fermi Superfluids, including work on 
topological quantum technology in (p + ip) 
superconductors, has been based on the Bogoliubov-de 
Gennes (generalized mean-field) method.

2. Consideration of some simple examples shows that 
results obtained by this method (at least if applied 
naively) may be wrong.

3. This is because in the cases of interest the response of 
the Cooper pairs cannot be ignored.

4. The question most relevant to TQT relates to the Berry 
phase: here again consideration of a simple example 
strongly suggests that the response of the Cooper pairs 
cannot be ignored, so that results obtained by (naïve 
application of) the BdG equations may be qualitatively 
misleading.

5. If so, this could be a disaster for the whole program of 
TQT in (p + ip) Fermi superfluids.
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The Bogoliubov-de Gennes (generalized mean-field, “BdG”) method.
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෡ெிܪ is bilinear in ෠߰, ෠߰† ⟹ can be diagonalized by writing
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where ݑ௜ ݎ , ௜ݒ ࢘ are spinors (in ordinary spin space) satisfying 
the BdG equations
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Some notes on the BdG method:

1. The mean-field Hamiltonian is particle-nonconserving
(“spontaneous breaking of U(1) Symmetry”)

2. Relation phase of ݒሺݎሻ and ሻݎሺݑ is determined by phase 
of Δሺݎሻ. But global phase of Δሺݎሻ is determined by that 
of “order parameter” ߰றሺݎሻ߰றሺݎᇱሻ , which is physically 
meaningless

3. Hence all the physics is invariant under global phase 
transformation 
ݑ ݎ → ݑ ݎ , ݒ ݎ → exp݅߮ ݒ ݎ .	 ߮ ് ݂ሺ࢘ሻ .

4. If ݑ௜ ݎ , ௜ݒ ݎ 	is a solution of BdG equations with 
eigenvalues ܧ௜ then ݒ௜

∗ ݎ , ௜ݑ
∗ ݎ is a solution with 

eigenvalues െܧ௜

5. Hence, by (3) with ߮ ൌ  we can as well choose the ,ߨ
“negative-energy” solution to be ݒ௜

∗ ݎ , ௜ݑ
∗ ݎ

(⇒ possibility of Majorana solutions, 
ݑ ݎ ൌ ∗ݒ ݎ , ܧ ൌ 0)

6. The (solutions of the) BdG equations tell us the relation
between the (even-number-parity) groundstate and the 
simplest fermionic (add-points) energy eigenstates. They 
do not tell us anything directly about the GS (though cf. 
Stone & Chung, Phys. Rev. B 73, 014505 (2006).)
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example:

Consider an even-number-parity BCS superfluid at rst. (so ࡼ௢ ൌ 0)

Now create a single fermionic quasiparticle in state k:

For this, the appropriate BdG qp creation operator ߛ௜
ற	turns out to be

௜ߛ
ற ൌ ↑௞ܽ௞ݑ

ା ൅ ↓௞ܽି௞ݒ , ௞ݑ ≡
ଵ

ଶ
1 ൅

∈ೖ
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, ௞ݒ ≡
ଵ

ଶ
1 െ

∈ೖ
ாೖ

௞ܧ ≡ ∈௞
ଶ ൅ Δ௞ ଶ ଵ/ଶ

The total momentum ࡼf of the (odd-number-parity) many-body state 
created by ߛ௜ is

௙ࡼ ൌ ௞ݑ ଶ ԰࢑ െ ௞ݒ ଶ െ԰࢑ ൌ ௞ݑ ଶ+ ௞ݒ ଶ ԰࢑ ≡ ԰࢑

so Δࡼ௙ ≡ -௙ࡼ ௢ࡼ ൌ ԰࢑

Now consider the system as viewed from a frame of reference moving 
with velocity െ࢜, so that the condensate COM velocity is ࢜. Since the 
pairing is now between states with wave vector k and െ࢑ ൅݉࢜/԰ , 
intuition suggests (and explicit solution of the B&G equations 
confirms) that the form of ߛ௜

ற is now

௜ߛ
ற ൌ ௞ܽ௞ା೘ೡݑ

԰
,↑

ற ൅ ↓௞ܽି௞ݒ ← nb. not ܽ
ି ௞ା೘ೡ

԰
!

Thus the added momentum is

Δࡼ′௙ ൌ ௞ݑ ଶ ԰࢑ ൅݉࢜ െ ௞ݒ ଶ െ԰ ࢑
ൌ ԰࢑ ൅ ௞ݑ ଶ݉࢜

total 
momentum

standard textbook result
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Recap:   BdG Δܲ′௙ ൌ ԰࢑ ൅ ௞ݑ ଶ݉࢜

However, by Galilean invariance, for any given condensate 
number N,

௢′ࡼ ൌ ௢ࡼ ൅ ௙′ࡼ,࢜݉ܰ ൌ ௙ࡼ ൅ ܰ ൅ 1 ݉࢜.

⇒ Δܲ′௙ ≡ ܲᇱ௙ െ ܲᇱ௢ ൌ Δࡼ′௙ ൅ ݉࢜ ൌ ԰࢑ ൅݉࢜.

And this result is independent of N (so involving “spontaneous 
breaking of U(1) symmetry” in GS doesn’t help!)

So: BdG⇒ Δܲ′௙ ൌ ԰࢑ ൅ ௞ݑ ଶ݉࢜

GI→ Δܲ′௙ ൌ ԰࢑ ൅݉࢜
Galilean 
invariance

What has gone wrong?

Solution: Conserve particle no.!
When condensate is at rest, correct expression for fermionic

correlation operator ߛ௜
றis

௜ߛ
ற ൌ ↑௞ܽ௞ݑ

ା ൅ መሺ௩ሻܥ↓௞ܽି௞ݒ
ற ←creates ultra Cooper pair 

(with COM velocity O)

Because condensate at rest has no spin/momentum/spin current …, the 
addition of ܥመ has no effect. However:
when condensate is moving

௜ߛ
ற ൌ ௞ܽ࢑ା೘࢜ݑ

԰
,↑

ା ൅ መሺ଴ሻܥ↓,௞ܽି௞ݒ
ற

⇒ Δܲ′௙ ൌ ௞ݑ ଶሺ࢑ ൅ ݉࢜/԰ሻ ൅ ௞ݒ ଶ െ െ԰݇ ൅ ݉࢜
= ௞ݑ ଶ ൅ ௞ݒ ଶ ԰࢑ ൅ ݉࢜ ൌ ԰࢑ ൅݉࢜

In accordance with GI argument

← creates extra Cooper pair
(with  velocity v)
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Failure of BdG/MF: a slightly less trivial example

For a thin slab of (appropriately oriented) 3He-B, 
calculations based on BdG Equations predict a Majorana
fermion state on the surface. A calculation* starting from the 
fermionic MF Hamiltonian then predicts that in a 
longitudinal NMR experiment, appreciable spectral weight 
should appear above the Larmor frequency ߱௅ ≡ :Β௢ߛ

The problem: no dependence on strength of dipole coupling ݃஽, 
(except for initial orientation)! But for ݃஽ =0, መܵ௭ commutes with ܪ෡ ⇒

න߱	߯݉ܫ௭௭ ߱ ݀߱	~	 መܵ௭, መܵ௭, ෡ܪ ൌ ܱ

⇒ ௭௭߯݉ܫ ߱ ߜ	~	 ߱ !
For nonzero gD,
௭௭݈߯݉	߱׬ ߱ ݀߱	~݃஽ ⇒ result cannot be right for ݃஽ → ܱ
Yet – follows from analysis of MF Hamiltonian!

MORAL: WE CANNOT IGNORE THE COOPER PAIRS!

*M.A. Silaev, Phys. Rev. B 84, 144508 (2011)

B

Brf
௭௭߯݉ܫ ߱

→ L
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(Conjectured) further failure of MF/BdG approach

Imagine a many-body Hamiltonian (e.g. of a ݌ ൅ ݌݅
superconductor) which admits single Majorana fermion solutions at 
two widely separated points. These M.F.’s are “halves” of a single 
ܧ ൌ 0 Dirac-Bogoliubov fermion state. Intuitively, by injecting an 
electron at 1 one projects on to this single state and hence gets an 
instantaneous response at 2. Semenoff and Sodano (2008) discuss this 
problem in detail and conclude that unless we allow for violation of 
fermion number parity, we must conclude that this situation allows 
instantaneous teleportation.

Does it? Each Majorana is correctly described, not as usually assumed by

ெߛ
ற ൌ න ݑ ݎ ෠߰ற ݎ ൅ ∗ݑ ݎ ෠߰ ݎ ݀࢘			 ≡ ெሶߛ

but rather by

ெߛ
ற ൌ න ݑ ݎ ෠߰ற ݎ ൅ ሻݎሺ∗ݑ ෠߰ሺݎሻܥற	 ݀࢘

1 2

↑
M.F.

↑
M.F.

Cooper pair 
creation operator

But it is impossible to apply the “global” operator ܥறinstantaneously! 
What the injection will actually do (inter alia) is to create, at 1, a 
quasihole–plus–extra–Cooper –pair at 1, and the time needed for a 
response to be felt at 2 is bounded below by L/c when C is the C. pair 
propagation velocity (usually ~vf).

L
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z = ‐B z B(r) ≡ V(r)

V(r)=Vof(‐o)

o , range of f() /R but  1.

A TRIVIAL-LOOKING PROBLEM
INVOLVING THE BERRY PHASE

Consider a neutral s-wave 
Fermi superfluid in an 
annular geometry: single 
quantum of circulation 

vs = /2mR

( ௦ ).

•

pair radius

So effect on condensate o(BBo/)2≪ 1

Create Zeeman magnetic field trap:

Vs o

R
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GS of 2N+1-particle system presumably has
single Bogoliubov quasiparticle trapped in 
Zeeman trap.

Now, let’s move o adiabatically once around 
annulus:

Question:
What Berry phase is picked up?

Possible conjectures:
(a) 
(b) 0
(c) something else
(d) question ill-defined

Let’s do this problem by two different methods:
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Method 1 (BdG)

The phase of the superconducting condensate rotates through 2
as we go once around the annulus, so without loss of generality 
we may take

∆	 ߠ ൌ 	 Δ exp ߠ݅
So BdG equations read:

෡௢ܪ ∆ ݁௜ఏ

Δ ݁ି௜ఏ െܪ෡௢

ሻߠሺݑ
ሻߠሺݒ ൌ ܧ

ሻߠሺݑ
ሻߠሺݒ

෡௢ܪ ≡ െ	
԰ଶ

2ܴ݉ଶ
	
߲ଶ

ଶߠ߲
൅ V ߠ െ ௢ߠ െ ߤ

Cf: particle of spin ½ in trap centered at ߠ௢, with
field rotating around z-axis:

෡௢ܪ ௜ఏ݁ܤߤ

௜ఏି݁ܤߤ െܪ෡௢

߯↑	ሺߠሻ
߯↓	ሺߠሻ

ൌ ܧ
߯↑	ሺߠሻ
߯↓	ሺߠሻ

ሺܪ෡௢ ൌ ܤߤ cos ሻݔ

Thus: ↑൐⟶ ݌ ൐ (“particle”)
↓൐⟶ ݄ ൐ (“hole”)

Now in the magnetic case it is a textbook result that Berry phase 
߮஻ is

߮஻ ൌ ଶݏ݋ܿ	ߨ2 2/ݔ ← “weight” of │↑> component

Our (superconducting) case corresponds to weight of |݌ ൐ ൌ 1/2, 
i.e. to ߯ ൌ ߨ 2⁄ , so infer 

߮஻ ൌ ߨ (BdG)

ݖ̂
࡮

ݔ
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Method 2: Microscopic (N-conserving) argument

In presence of Zeeman trap, 2N+1-particle “ground” 
state with ݈௢ ≠ 0 is of general form

Ψଶேାଵ ൌ 	∑ ℓ݂ߙℓ
ାΨଶேℓ ℓߙ

ା ≡ ↑ℓܽℓݑ
ା െ vℓ

∗ܽିℓାℓ೚↓ܥመℓ೚
ற

Then easy to show that

߮஻ ≡ lm׬ Ψ∗ ௢ߠ
డஏ

డఏೀ
ைߠ݀

ଶగ
ை ൌ 2π∑ ℓ ℓ݂

2.ℓ

ℓߟ) ≡ vℓ/ (ℓݑ

Conserves N!

Vs o

R

Ansatz:
2N-particle “ground” state for ℓ௢≠ 0 is

2n = ( ௅	ℓ ℓ↑
ା

ିℓାℓ೚
ା )N/2 Ivac>

 መℓ೚ܥ)
ற ) N/2 Ivac>

Creates C. pair with any 
momentum ℓ௢

ℓ݂~݁௜ℓఏ
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Recap: in particle-conserving calculation,

߮஻ ൌ ෍ℓߨ2 ℓ݂
ଶ

ℓ
But recall: In particle-conserving calculation, a Bogoliubov qp with 
wave vector k (ℓ), even in a moving (rotating) 

condensate, adds (angular) 
momentum ԰࢑	ሺ԰ℓሻ. Hence 
difference Δܬ in angular 

momentum between even-parity and odd-parity groundstate is just 
∑ ℓ ℓ݂

ଶ
ℓ .

⟹ ߮஻ ൌ 2π ∙ Δܬ

The $64K argument: what is ∆ܬ?

Consider situation as viewed from frame of moving condensate: then 
condensate is at rest, Zeeman trap is moving at speed െݒ.ൌ
െ ԰ 2ܴ݉⁄ . But since the weights of particle and hole is then added 
qp or equal, no extra particle density is associated with the trap, 
hence no Δܬ. However, there is a probability of exactly ½ of the hole 
component and hence of an extra Cooper pair relative to the even-
parity groundstate. When we go back to the last frame, this cancels 
half the effect of the added single particle and gives Δܬ ൌ 1/2.

Hence, apparently,
߮஻ ൌ ߨ (microscopic particle-conserving calculation)

⟹ particle-conserving calculation agrees with (naïve) BdG
approach
↑ : Is there a first-order (in ݒ) connection to Δܬ in the moving frame?

i.e. involving ܽ†
࢑

ܽ†
ℓ

ℓ௢


