
Probing the mechanical properties of graphene using a corrugated elastic substrate

Scott Scharfenberg,1 D. Z. Rocklin,1, 2 Cesar Chialvo,1 Richard L. Weaver,1, 2 Paul M. Goldbart,1, 2

and Nadya Mason1

1)Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street,

Urbana, Illinois 61801

2)Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign,

1110 West Green Street, Urbana, Illinois 61801

(Dated: 14 January 2011)

We examine the mechanical properties of graphene samples of thickness ranging from 1 to 17

atomic layers, placed on a micro-scale-corrugated elastic substrate. Using atomic force mi-

croscopy, we show that the graphene adheres to the substrate surface, and can substantially

deform the substrate, with larger graphene thicknesses creating greater deformations. We use

linear elasticity theory to model the deformations of the composite graphene-substrate system.

We compare experiment and theory, and thereby extract information about graphene’s bending

rigidity, adhesion, critical stress for interlayer sliding, and sample-dependent tension.
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The exceptional mechanical properties of graphene have made it attractive for nano-mechanical

devices and functional composite materials1. Two key aspects of graphene’s mechanical behavior are its

elastic and adhesive properties. The elastic properties have been measured using nano-indentation2 and

pressurization3 techniques, and the Young’s modulus E was found to be exceptionally high, ∼ 1 TPa.

Graphene’s van der Waals adhesion to surfaces has been examined theoretically4, and local adhesion to

nanoparticles has been studied5. However, it is typically difficult to extract experimental parameters

for adhesion, despite the fact that graphene’s adhesive properties can strongly influence its electronic

and mechanical behavior. The dopant distribution and carrier mobility of a graphene layer can be

significantly altered upon adhesion of the layer to a substrate6,7. Even suspended graphene is known

to adhere to sidewalls, which introduces strain and modifies mechanical behavior8,9. In addition, the

mechanical interplay between graphene and other materials has not been well studied, although it is

crucial to the use of graphene in composite1, flexible10, or strain-engineered11 materials.

In this Letter, we explore both elasticity and adhesion, which are evident in the interaction between

micro-scale-corrugated elastic substrates and graphene samples of thicknesses ranging from 1 to 17

atomic layers. By using an atomic force microscope (AFM) to determine surface adhesion and defor-

mations, we find that few layer graphene (FLG) can fully adhere to the corrugated substrate, and that

thicker samples flatten the corrugated substrate more than thinner samples do. By developing a simple

linear elasticity theory to model the flattening and adhesion as a function of layer thickness, we are able

to extract information about various fundamental and sample-dependent properties, such as graphene’s

bending rigidity, adhesion, critical stress for interlayer sliding, and sample-dependent tension.

Sample substrates were prepared by casting a 3 mm thick layer of polydimethylsiloxane (PDMS)—

which cures into a flexible, rubbery material—onto the exposed, corrugated surface of a writable com-

pact disc. This resulted in approximately sinusoidal corrugations on the PDMS, having a wavelength

of 1.5 μm and a depth of 200 nm (see Fig. 1a). Graphene was then deposited onto the PDMS via

mechanical exfoliation12. Candidate samples were first located using optical microscopy, then imaged

on an Asylum Research MFP-3D AFM. Figure 1a shows a topographic image of FLG on the PDMS; it

is evident from the image that the graphene conforms to the corrugations, as illustrated in Fig. 1b.

In order to fit the experimental data to a theoretical model, it was necessary to determine (1) the

thickness of the FLG, (2) the adhesion between the FLG and the PDMS, and (3) the height profile of the

PDMS-FLG system. The soft, non-standard substrate created difficulty in measuring FLG thickness

via established AFM and Raman techniques. Thus, the thickness was determined by using the AFM

(in contact mode) to fold the flake onto itself, and then using the AFM again to measure the resultant

FLG-FLG step height. An example of AFM-folded FLG is shown in Fig. 2a. The same flake could be

folded at multiple locations to increase accuracy (typical accuracy was 1-2 layers), although, because

the method was destructive, it had to be undertaken once all other measurements were completed.
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FIG. 1. a. AFM 3D topographic image of FLG on corrugated PDMS. AFM height and phase data are

superimposed to create color contrast. b. Illustration of FLG-PDMS interaction, showing how FLG adheres

to and flattens the PDMS corrugations. The coordinates and amplitudes relevant to the theoretical model are

labeled.

The areas of the graphene that adhered to the PDMS were identified by measuring the phase of

the oscillation of the AFM cantilever. This phase is determined by the electrostatic properties of the

surface; in other words, sections having the same adhesion have common electrostatic properties and

thus a common phase. The main image of Fig. 2b shows a two-dimensional phase map for 2-layer FLG,

in which

the phase is uniform across the sample (except where adhesion is lost at the steepest slopes of the

corrugation). These data demonstrate the near-conformal adhesion between the FLG and the PDMS,

and are consistent with previous work on graphene placed over more shallow depressions9. The AFM

height data similarly indicate that the FLG adheres to the corrugations of the PDMS (e.g., see Fig. 3).

In contrast, the inset to Fig. 2b shows the phase data for 13-layer FLG, where bubble-like structure

appears across the sample, showing that the phase is not uniform and, hence, that the FLG does not

adhere well to the PDMS. In general, we found that samples having more than ∼ 11 layers did not fully

adhere; this is consistent with the predicted “snap-through” instability in graphene on a corrugated

substrate13. The adhesive properties did not seem to depend on the size or aspect ratio of the graphene

samples, only their thickness.

The most remarkable aspect of the FLG-PDMS system is that interplay between the rigidity of the

graphene and the shear modulus of the PDMS causes the FLG to become corrugated and the PDMS to

be flattened. Figures 3a and b show image and height measurements for 8- and 13-layer FLG on PDMS,

respectively. In Fig. 3a it is clear that the FLG maintains the basic shape of the PDMS corrugations,
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FIG. 2. a. Micrograph of FLG folded by AFM tip. FLG-FLG edges are used for thickness measurements.

Dashed arrow points to fold and shows the direction in which AFM tip was dragged. b. AFM phase images of

FLG on PDMS. Main figure: flake of FLG, where the lower-left section is 2-layer (upper right is much thicker,

> 100 layers). The 2-layer region shows uniform adhesion over plateaus and valleys, indicated by homogeneous

contrast over them. Adhesion loss, evident as bright and dark lines, occurs only at steepest regions between

plateaus and valleys. Inset: 13-layer graphene showing inhomogeneous phase and adhesion; bubble-like lighter

patches indicate where adhesion changes. Scale bar is 2µm.

but pulls the corrugations up in the valleys and pushes them down on the plateaus. In contrast, Fig. 3b

shows that 13-layer FLG sits on top of the PDMS; while the FLG likely strongly deforms the PDMS,

the amount of flattening is difficult to determine because of the lack of adhesion. The 13-layer FLG

is likely wavy due to slight sidewall adhesion, similar to what is seen in suspended graphene. Figure 4

shows the fractional height difference between the FLG-PDMS composite and the bare PDMS, plotted

against graphene thickness, for 18 samples (measured on 9 different PDMS substrates); it is clear that

the amount of flattening increases with layer number.

We now develop a linear elasticity theory, related to that of Yu and Suo14, in which we determine

the surface stress required on both the initially flat (ignoring the nanometer-scale intrinsic ripples) FLG

and the initially corrugated PDMS, such that they each deform to accommodate the other. Continuum

models have been applied previously to characterize the bending rigidity of few-layer graphene16.

To start, we consider an undeformed PDMS substrate having a corrugated surface: h(x) = H cos kx

(see Fig. 1b for coordinates). Height profiles that are not simple sine waves can be handled via the

superposition of suitable terms. Graphene adheres to and flattens this surface, reducing the corrugation

amplitude to H−ΔH (as discussed below). The normal stress S cos kx required to deform the graphene

in this way then follows from thin plate theory15, and is related to the deformed height profile via

M∇4[(H − ΔH) cos kx] = S cos kx, (1)

where M is the flexural, or bending , rigidity of the FLG, so that S = Mk4(H − ΔH). An equal
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FIG. 3. Image (top) and height measurements (bottom) for a. 8-layer and b. 13-layer graphene. Red lines show

trajectories of scans over graphene, corresponding to red height curves (averaged between the dotted lines).

Blue lines show scans of surrounding PDMS substrate. Scans over PDMS alone are taken far from FLG, to

provide a baseline height unaffected by FLG. Note the scale difference between vertical and horizontal axes in

height vs. distance curves.

and opposite stress acts on the PDMS substrate, so we next determine how the PDMS responds to this

stress.

We regard the PDMS as being a semi-infinite, isotropic, incompressible medium, and describe dis-

tortions of it by means of a displacement field �u(x, z). (We only consider configurations that are

translationally invariant in the y-direction, and hence are effectively two-dimensional.) At the linear

level, to which we are working, incompressibility implies divergence-free displacements: �∇ · �u = 0. The

displacement �u obeys the condition of mechanical equilibrium, i.e.,

μ∇2�u = �∇p, (2)

in which μ is the shear modulus and p the pressure field, introduced to implement incompressibility,

which requires that ∇2p = 0. In determining �u, the appropriate boundary condition involves specifying

the normal component of the stress, which amounts to the condition (summing over repeated indices)

μ ni (∂iuj (�r) + ∂jui (�r)) − nj p (�r) = fj (�r) , (3)

in which �f(�r) is the external force acting on the PDMS at its surface and �n(�r) is the unit normal

vector pointing outward from the PDMS surface. It is then straightforward to show that the PDMS

responds by undergoing the position-dependent displacement
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FIG. 4. Data and fits for flattening factor (fractional deformation of PDMS) vs. number of layers. Symbols

show measured flattening for 18 FLG samples. Samples with thicknesses > 11 layers are shown with open

triangles, as AFM height measurements are likely modified by the lack of adhesion to the substrate. A value of

F = 0 corresponds to no flattening of the PDMS, whereas F = 1 corresponds to totally flattened PDMS. Error

bars are related to the uncertainty in layer number and the spatial non-uniformity of flattening. Red curve

is least squares fit to model, assuming zero tension in samples. Blue curve is predicted flattening for samples

having zero tension (see text).
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⎞
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In particular, the surface of the PDMS is displaced according to (ux, uz)|z=0 = −(S/2μk)(0, cos kx),

which creates a surface profile (H − ΔH) cos kx. The amplitude is diminished from H by an amount

ΔH =
S

2μk
=

Mk4(H − ΔH)

2μk
. (5)

Rearranging gives the flattening factor

F ≡ ΔH

H
=

(Mk3/2μ)

1 + (Mk3/2μ)
. (6)

We now compare the model to the data, to elucidate the FLG’s mechanical behavior. Figure 4

shows measured values of F vs. n, along with a least squares fit to equation (6) (red curve) in which

we assume M proportional to the cube of the number of layers, consistent with a continuum model for

thick graphene16 . From the fit we extract a dimensionless graphene rigidity parameter

G ≡ Mk3/2μn3 = 0.00091.
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The shear modulus μ of PDMS was measured separately via nanoindentation and an ultrasonic

probe, which gave μ = 0.4 MPa and 0.23 MPa, respectively (the difference is possibly due to probing

surface vs. bulk moduli). Using μ = 0.4 MPa, as well as k = 4.2 μm−1, the bending rigidity of n-

layer FLG is then obtained as M = 9.8×10−18n3 Nm. This value is higher than that predicted using

Kirchhoff plate theory, from which M = E (nt)3 /12 (1 − ν2) = 2.9×10−18n3 Nm, using the graphene

Young’s modulus E ≈ 900 GPa17, Poisson ratio ν ≈ 0, and per-layer thickness t = 0.335 nm17. The

predicted values for F are plotted as the blue curve in Fig. 3.

The spread in the data is greater than can be accounted for by measurement uncertainty. This leads

us to hypothesize that the discrepancy between extracted and predicted values of F (or M) is caused

by tension in the graphene. Because of its high stiffness against stretching we believe the FLG slips

along the pdms substrate as it is applied, until sample-dependent friction between the PDMS and the

FLG is sufficient to halt the process, leaving some tension in the FLG (see dots in Fig 1). A tension T

could modify the flattening factor in equation (6), giving

F ≡ ΔH

H0

=
(Mk3/2μ) + (Tk/2μ)

1 + (Mk3/2μ) + (Tk/2μ)
. (7)

If we assume that the difference between the predicted values of F (blue curve) and the data in

Fig. 4 is due to tension, we can use equation (7) to extract a value of tension for each sample. This

yields tension values between 0 and 0.20 Nm−1, with no discernible trend with thickness. The tension is

positive for each sample, to within the margin of error, consistent with the picture that friction opposes

the contraction of FLG as it conforms to the corrugated PDMS. The maximum tension corresponds to

a maximum axial strain of T/nhE = 7.8×10−5. We can also use the tension to estimate the magnitude

of the stress due friction: assuming the friction acts over a distance d ≥ 10 μm, we find a stress T/d of

less than 2×104 Pa. The condition that tension be positive, taken together with our data, implies that

FLG’s bending rigidity is no greater than (1.6 ± 0.8)n3 × 10−18 Nm, similar to predicted values. If, as

seems reasonable, the tension is negligibly small for at least one sample, then this bound would become

an estimate of the graphene rigidity.

The data shown in Fig. 4 can also be used to estimate the normal interface stress S = 2μkFH , which

ranges from (1.1 to 3.0)×105 Pa. The data also show that no samples which adhere to the surface have

F > 0.6, implying that the adhesive strength between the graphene and the PDMS is ≤ 3.0 × 105 Pa.

Note that this stress is model-independent.

We can extract bounds on the graphene-PDMS adhesion energy by considering that the energy of the

adhesion must be at least as large as the spatially-averaged elastic deformation energy. This energy can

be regarded as a sum of contributions: the elastic deformation of the substrate (1/2)σik

(
uik−(p/μ)δik

)
=

SΔH cos2(kx)/2; the FLG deformation under tension (T/2)(Fh′(x))2 = T (FH)2k2 cos2(kx)/2; and the

FLG bending (M/2)
(
Fh′′(x)

)2
= M(FH)2k4 cos2(kx)/215. Ignoring the negligible tension contribution,
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the spatial average of these sums to μkFH2/2. The maximum elastic energy (which is also the lower

bound of the adhesive energy) in our samples is thus 0.044 eV/nm2. This is consistent with the theo-

retical prediction of 0.04 eV/nm2 for the van der Waals adhesive energy between graphene and a SiO2

substrate4. Absent any other significant contributions to the energy budget (such as work done against

friction), the adhesion energy must equal the elastic energy and 0.044 eV/nm2 becomes an estimate of

the adhesive energy.

Even though thin plates have bending rigidity determined entirely by Young’s modulus and thick-

ness, there are nevertheless (small) shear strains developed interior to the plate (they are negligible in

estimating bending rigidity.) There are in consequence shear stresses developed within the graphene

slab that are opposed by interlayer shear strength. These stresses could cause the graphene layers to

slide relative to one another. In this case, the impact on the flattening factor is to modify the depen-

dence of the bending rigidity on the number of layers from n3 for a cohesive sample to
∑

a n3
a, where na

is the number of layers in the ath slab. We find that such a model does not improve the fits to the data,

and thus find no evidence that the graphene layers slide. The physical effect of sliding would be to

decrease the flattening factor, and thus sliding cannot explain the discrepancy between the theoretical

values and data of Fig. 4. We hypothesize that there does, however, exist some critical shear stress

beyond which layers slide relative to one another. Considering the finite thickness of the FLG, Mindlin

plate theory18 shows that the boundary stress needed to deform the FLG generates a central shear

strain ε of

ε = n2t2k3(H − ΔH)/4. (8)

The absence of evidence for sliding in samples of < 11 layers thus suggests a lower bound on the

critical shear strain εcrit of ≥ 1.2 × 10−5. Multiplying by the graphene shear modulus, which we take

to be half its Young’s modulus, this implies a critical shear stress between the layers of ≥ 5.6 MPa.

To conclude, we have developed a method of measuring the mechanical properties of graphene using

deformable, micro-corrugated substrates. We are able to put bounds on—or extract estimates for—

fundamental properties such as graphene’s bending rigidity, critical shear stress, and the FLG-PDMS

adhesive strength and energy. We also extracted sample-dependent properties such as the tension and

normal interface stress. The experimental and theoretical techniques developed in this paper may be

readily extended to various substrates having a range of surface geometries.
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