Interacting Electrons, Theory and Computational ApproachesR. M. Martin, L. Reining and D. M. Ceperley, Cambridge (2016). Available now on Amazon in hard-copy or Kindle.
Alder, B.J., and Ceperley, D.M., Some Programming Aspects of Quantum Monte Carlo Calculations, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-87971, in Cyber 205 Applications Symposium in Fort Collins, Colorado, August 12-13, 1982.
Ceperley, D.M., The Simulation of Liquid Helium, in Molecular-Dynamics Simulation of Statistical-Mechanical Systems, ed. G. Ciccotti and W. G. Hoover, North Holland, 1985.
Bachelet, G.B., Ceperley, D.M., Chiocchetti, M., and Mitas, L., Atomic Pseudo-Hamiltonians for Quantum Monte Carlo, *(no figures) in Progress in Electron Properties of Solids, ed. R. Girlanda et al, p. 11, Klauer (1989).
Ceperley, D. M., and Pollock, E. L., Path-Integral Computation Techniques for Superfluid 4He, *(figures missing) Monte Carlo Methods in Theoretical Physics, ed. S. Caracciolo and A. Fabrocini, ETS Editrice, Pisa, Italy, (1992).
Schmidt, K. E., and Ceperley, D. M., Monte Carlo Techniques for Quantum Fluids, Solids and Droplets, in The Monte Carlo Method in Condensed Matter Physics, ed. K. Binder, Topics in Applied Physics, Vol 71, Springer-Verlag, (1992). See update in Chapter 13 of the second edition (1996).
Ceperley, D. M., Fermion Nodes, J. Stat. Phys. 63, 1237 (1991).
Ceperley, D. M., Quantum Monte Carlo Methods for Fermions, pg 427. in The Proceedings of the Les Houches Summer School, Session 56, Strongly Interacting Fermions and High Tc Superconductivity, eds. B. Doucot and J. Zinn-Justin, Elsevier, (1995).
Wagner, M. and Ceperley, D. M., Path Integral Monte Carlo Simulations of thin 4He Films on a H2 Surface, Proceedings of the International Conference on Quantum Fluids, J. Low Temp. Phys. 89, 581 (1993).
Martin, R. M., Kwon, Y., Li, X.-P., Mitas, L., Natoli, V., Shirley, E. L. and Ceperley, D. M., Quantum Monte Carlo Calculations on Real Materials in Interatomic potentials and structural stability: Proceedings of the Taniguchi Symposium, eds. K. Terakura and H. Akai, Springer-Verlag, Berlin (1993).
Moroni, S., Ceperley, D. M. and Senatore, G., Static Response of 2D Electrons from Quantum Monte Carlo, Proceedings of the Rochester Symposium on Strongly Coupled Plasmas, eds. H. M. Van Horn and S. Ichimaru, U. of Rochester Press (1993).
Ceperley, D. M., The Simulation of Quantum Systems * in Recent Progress in Many-Body Theories, Vol 4, Ed. E. Schachinger, H. Mitter, and M. Sormann (1995).
Ceperley, D. M. and L. Mitas, Quantum Monte Carlo Methods in Chemistry, *(no figures) in New Methods in Computational Quantum Mechanics Advances in Chemical Physics, XCIII, eds. I. Prigogine and S. A. Rice, 1996.
Ceperley, D. M., Path integral Monte Carlo methods for fermions *, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, Ed. K. Binder and G. Ciccotti, Editrice Compositori, Bologna, Italy, 1996.
Pierleoni, C., W. R. Magro, D. M. Ceperley, and B. Bernu, Path Integral Monte Carlo Simulation of Hydrogen Plasma * in Proceedings of the (Binz Germany) International Conference on the Physics of Strongly Coupled Plasmas, eds. W. D. Kraeft and M. Schlanges, World Scientific (1996).
Senatore, G., S. Moroni, and D. M. Ceperley, The Local Field of the Electron Gas * in Proceedings of the (Binz Germany) International Conference on the Physics of Strongly Coupled Plasmas, eds. W. D. Kraeft and M. Schlanges, World Scientific (1996).
Ceperley, D. M., Solving quantum many-body problems with random walks *, in Computational Physics, Proc. Ninth Physics Summer School, Australian National University, Eds. Henry J. Gardner and Craig M. Savage, World Scientific Pub. Co. (1997).
Ceperley, D. M. and M. C. Gordillo, Conditions of Superfluidity in Molecular Hydrogen, * (no figures) Condensed Matter Theories, Vol. 12, eds. J. W. Clark and P.V. Panat, Nova Science, New York (1997).
Srinivasan, A., D. M. Ceperley and M. Mascagni, Random Number Generators for Parallel Applications * in Monte Carlo Methods in Chemical Physics, Vol. 105, Advances in Chemical Physics, eds. D. M. Ferguson, J. I. Siepmann and D. G. Truhlar, Wiley (1999).
Militzer, B., W. Magro, and D. Ceperley, Fermionic Path-Integral Simulation of Dense Hydrogen,* in Strongly Coupled Coulomb Systems, ed. by G. J. Kalman, J. M. Rommel and K. Blagoev, Plenum Press, New York NY, 1998.
Ceperley, D. M., Understanding Electronic WaveFunctions* in Electron Correlations and Materials Properties, eds. A. Gonis and N. Kioussis, Plenum, (1999).
Dewing, M and D. M. Ceperley, Methods for Coupled Electronic-Ionic Monte Carlo*, Recent Advances in Quantum Monte Carlo Methods, II, ed. W. A. Lester, S. M. Rothstein, and S. Tanaka, World Scientific, Singapore (2002).
Bressanini, D., D. M. Ceperley and P. Reynolds, What do we know about wave function nodes?, Recent Advances in Quantum Monte Carlo Methods, II, ed. S. Rothstein, World Scientfic (2001).
Bernu, B. and D. M. Ceperley, Path Integral Monte Carlo,Quantum Simulations of Complex Many Body Systems eds. J. Grotendorst et al., NIC Series Vol 10 (2002).
Ceperley, D., M. Dewing and C. Pierleoni, The Coupled Electronic-Ionic Monte Carlo Simulation Method, in Bridging Time Scales: Molecular Simulations for the Next Decade, eds. P. Nielaba, M. Mareschal and G. Ciccotti, Springer-Verlag, pgs. 473-500 (2002).
Shumway, J. and D. M. Ceperley, Quantum Monte Carlo Methods in the Study of Nanostructures,*Handbook of Theoretical and Computational Nanotechnology ,eds. M. Rieth and W. Schommers, Encyclopedia of Nanoscience and Nanotechnology, Vol. 3, 605-641 (2006) American Scientific Publishers,.
Bernu, B. and D. M. Ceperley, Path Integral Calculations of exchange in solid 4He, J. of Phys.and Chem. of Solids, 66, 1462 (2005) Proceedings of ISSP9 Symposium on Quantum Condensed Systems, ed. Y. Okuda and H. Ishimoto, Elsevier; cond-mat/0502486.
Pierleoni, C. and D. M. Ceperley, The Coupled Electron-Ion Monte Carlo Method, Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology , eds. M. Ferrario, G. Ciccotti, K. Binder, Lecture Notes in Physics Vol 703 , pgs. 641-683, Springer Berlin Heidelberg , 2006; physics/0510254.
Pierleoni, C., K. T. Delaney, M. A.Morales, D. M.Ceperley, M. Holzmann, Progress in Coupled Electron-Ion Monte Carlo Simulations of High-Pressure Hydrogen, Recent Progress in Many-Body Theory, Series on Advances in Quantum Many-Body Theory- Vol. 11, eds. J. Boronat, G. Astrakharchik, F. Mazzanti, World Scientific, pgs. 217-232, (2008).
D. M. Ceperley, Path Integrals and Supersolids, Proc. 9th International Conf.on Path Integrals, New Trends and Perspectives, pgs 307-314, eds. W. Janke, A. Pelster, World Scientific, (2008).
S. Warnecke, M.B. Sevryuk, D.M. Ceperley, J.P. Toennies, R. Guardiola and J. Navarro, The structure of para-hydrogen clusters, Eur. Phys. J. D e2009-00300-9 (2009).
M. Holzmann, B. Bernu, C. Pierleoni, J. McMinis, D. M. Ceperley, V. Olevano, and L. Delle Site, The momentum distribution of the homogeneous electron gas, Phys. Rev. Letts.107, 110402:1-5 (2011). http://link.aps.org/doi/10.1103/PhysRevLett.107.110402 arXiv:1105.2338
J. Kim, K. P. Esler, J. McMinis,M. A. Morales, B.K. Clark, L. Schulenburger and D. M. Ceperley, Hybrid Algorithms in Quantum Monte Carlo, J. Phys. Conf. Series. (2012).
J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Atomic Hydrogen: a superconducting superfluid or a metallic solid? submitted Phys. Rev. Letts. (2013).
A. Benali, D. M. Ceperley, et al., Development of QMCPACK for Exascale Scientific Computing, Chapter 21, pgs. 461-480 in Exascale Scientific Applications: Scalability and Performance Portability, published by CRC, eds. T. P. Straatsma, K.B. Antypas and T. J. Williams (2017) .
Vitaly Gorelov, Markus Holzmann, D. M. Ceperley and Carlo Pierleoni, Energy gap closure of crystalline molecular hydrogen with pressure, Phys. Rev. Letts. 124, 116401 (2020), arXiv: 1911.06135
N. Hiraoka, Y. Yang, T. Hagiya, A. Nioza, K. Matsuda, S. Huotari, M. Holzmann and D. M. Ceperley, Direct observation of the momentum distribution and renormalization factor in lithium, Phys. Rev. B101, 165124 (2020).
Yubo Yang, Nozomu Hiraoka, Kazuhiro Matsuda, Markus Holzmann and David M. Ceperley, Quantum Monte Carlo Compton profiles of solid and liquid lithium, Phys. Rev. B 101, 165125 (2020). arXiv: 1912.12295.
M. Ruggeri, M. Holzmann, D. M. Ceperley and C. Pierleoni, Quantum Monte Carlo determination of the principal Hugoniot of deuterium, Phys. Rev. B 102, 144108 (2020) arXiv:2008.00269
V. Gorelov, D. M. Ceperley, M. Holzmann, and C. Pierleoni, Electronic energy gap closure and the metal-insulator transition in dense liquid hydrogen, Phys. Rev. B 102, 195133 (2020); arXiv:2009.00652.
Vitaly Gorelov, David M. Ceperley, Markus Holzmann, and Carlo Pierleoni, Electronic structure and optical properties of quantum crystals from first principles calculations in the Born-Oppenheimer approximation, J. Chem. Phys. 153, 234117 (2020).arXiv:2010.01988
Kevin K. Ly and David M. Ceperley, Phonons of metallic hydrogen with quantum Monte Carlo, J. Chem. Phys. 156, 044108 (2022), arXiv:2111.07985.
Kevin K. Ly and David M. Ceperley, Stability and distortion of fcc LaH10 with path-integral molecular dynamics, Phys. Rev. B 106, 054106 (2022). arXiv:2206.04146
Hongwei Niu, Yubo Yang, Scott Jensen, Markus Holzmann, Carlo Pierleoni, David M. Ceperley, Stable solid molecular hydrogen above 900K from a machine-learned potential trained with diffusion Quantum Monte Carlo, Phys. Rev. Letts. 130, 076102 (2023) 10.1103/PhysRevLett.130.076102 , arXiv:2209.00658.
David M. Ceperley, Scott Jensen, Yubo Yang, Hongwei Niu, Carlo Pierleoni and Markus Holzmann, Training models using forces computed by stochastic electronic structure methods, Electron. Struct. 6 (2024) 015011,10.1088/2516-1075/ad2eb0, arXiv:2310.15994
Vitaly Gorelov, Markus Holzmann, David M. Ceperley and Carlo Pierleoni, Electronic excitation spectra of molecular hydrogen in Phase I from Quantum Monte Carlo and Many-Body perturbation methods. Phys Rev. B 109, L 241111 (2024) DOI 10.1103/PhysRevB.109.L241111 arXiv:2311.08506
M. Bonitz, et al., First principles simulations of dense hydrogen submitted Physics Plasma May 2024, https://arxiv.org/abs/2405.10627